中国地质环境监测院
中国地质灾害防治工程行业协会
主办

基于高分影像与InSAR解译的西藏林芝则隆弄高位链式地质灾害发育特征分析

李军, 褚宏亮, 李滨, 高杨, 王猛, 赵超英, 刘晓杰. 基于高分影像与InSAR解译的西藏林芝则隆弄高位链式地质灾害发育特征分析[J]. 中国地质灾害与防治学报, 2021, 32(3): 42-50. doi: 10.16031/j.cnki.issn.1003-8035.2021.03-06
引用本文: 李军, 褚宏亮, 李滨, 高杨, 王猛, 赵超英, 刘晓杰. 基于高分影像与InSAR解译的西藏林芝则隆弄高位链式地质灾害发育特征分析[J]. 中国地质灾害与防治学报, 2021, 32(3): 42-50. doi: 10.16031/j.cnki.issn.1003-8035.2021.03-06
LI Jun, CHU Hongliang, LI Bin, GAO Yang, WANG Meng, ZHAO Chaoying, LIU Xiaojie. Analysis of development characteristics of high-elevationchain geological hazard in Zelongnong, Nyingchi, Tibet based on high resolution image and InSAR interpretation[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 42-50. doi: 10.16031/j.cnki.issn.1003-8035.2021.03-06
Citation: LI Jun, CHU Hongliang, LI Bin, GAO Yang, WANG Meng, ZHAO Chaoying, LIU Xiaojie. Analysis of development characteristics of high-elevationchain geological hazard in Zelongnong, Nyingchi, Tibet based on high resolution image and InSAR interpretation[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 42-50. doi: 10.16031/j.cnki.issn.1003-8035.2021.03-06

基于高分影像与InSAR解译的西藏林芝则隆弄高位链式地质灾害发育特征分析

  • 基金项目: 中国地质调查局地质调查项目(DD20211540);基于InSAR与高分影像的高位冰崩、滑坡、崩塌灾害预判研究(藏财采【2020】0546)
详细信息
    作者简介: 李 军(1990-),男,博士研究生,主要从事工程地质与地质灾害研究。E-mail:ljedu@foxmail.com
    通讯作者: 褚宏亮(1981-),男,硕士,高级工程师,主要从事地质灾害防灾减灾研究。E-mail:52572706@qq.com
  • 中图分类号: P642

Analysis of development characteristics of high-elevationchain geological hazard in Zelongnong, Nyingchi, Tibet based on high resolution image and InSAR interpretation

More Information
  • 则隆弄沟位于西藏林芝米林县雅鲁藏布江右岸,属于震后影响区,因沟内地形陡峻、物源充足以及水源充沛,1950—2020年期间沟内高位地质灾害活动频繁,沟口村庄和桥梁长期遭受其严重威胁。根据现场调查与无人机航拍,结合多期遥感影像和InSAR数据,对则隆弄沟形成区高风险物源类别、数量以及流通区、堆积区的松散堆积物运动堆积特征进行解译,结果显示:目前则隆弄沟内形成区与流通区陡缓坡交界区域多级多期堆积有大量冰碛物松散物源,流动性较强,区域地质条件、地震活动、气象水文等因素为则隆弄高位链式地质灾害发生提供不稳定的物源结构、良好的临空条件和储藏平台、充足的势动能转换条件以及水动力条件。总结出则隆弄高位地质灾害链形成及演化过程为:高位冰崩(岩崩)-碎屑流-泥石流-堵江堰塞坝(湖)-洪水灾害,其长期具备高易发性和高危险性,后期应加强则隆弄沟高位地质灾害链的监测预警与风险防控。

  • 加载中
  • 图 1  直白大桥受损特征(拍摄于2020年10月)

    Figure 1. 

    图 2  则隆弄高位地质灾害链分区及无人机航空影像图

    Figure 2. 

    图 3  则隆弄沟2016年6月15日至2018年3月7日雷达二维形变

    Figure 3. 

    图 4  则隆弄沟形成区潜在高风险物源分布图

    Figure 4. 

    图 5  潜在高风险物源遥感解译图

    Figure 5. 

    图 6  则隆弄沟多期遥感影像对比图

    Figure 6. 

    图 7  堆积区特征(拍摄于2020年10月)

    Figure 7. 

    图 8  则隆弄沟(北沟)剖面图

    Figure 8. 

    表 1  则隆弄沟基本特征

    Table 1.  Basic characteristics of the Zelongnong Gully

    分区面积/km2沟长/km高程范围/m高差/m纵坡降/‰
    形成区31.035.954000~77823782468
    流通区4.734.543000~40001000201
    堆积区0.631.082840~3000160153
    下载: 导出CSV

    表 2  形成区潜在高风险物源类型及参数

    Table 2.  Types and parameters of potential high risk sources in the formation area

    形成区高风险
    物源类型
    分布位置数量/处
    (编号范围)
    最小物源编号
    (面积/km2
    最大物源编号
    (面积/km2
    总面积/km2最低位物源分布
    高程范围/m
    最高位物源分布
    高程范围/m
    冰崩体则隆弄沟后缘的南侧壁6(B1-B6)B6块体(0.034)B2块体(0.26)0.64914~52356023~6522
    岩崩体则隆弄沟后缘的南侧壁13(Y1-Y13)Y6块体(0.021)Y7块体(0.17)0.964615~48996775~7051
    冰碛物松散堆积体主沟(南沟)和支沟(北沟)沟底区域2(BQ1-BQ2)BQ02(1.42)BQ01(2.85)4.273815~40004896~4988
    下载: 导出CSV
  • [1]

    胡桂胜, 陈宁生, 邓明枫, 等. 西藏林芝地区泥石流类型及形成条件分析[J]. 水土保持通报,2011,31(2):193 − 197. [HU Guisheng, CHEN Ningsheng, DENG Mingfeng, et al. Classification and initiation conditions of debris flows in Linzhi Area, Tibet[J]. Bulletin of Soil and Water Conservation,2011,31(2):193 − 197. (in Chinese with English abstract)

    [2]

    殷跃平, 张永双. 汶川地震工程地质与地质灾害[M]. 北京: 科学出版社, 2013.

    YIN Yueping, ZHANG Yongshuang. Engineering geology and geological disasters in Wenchuan earthquake[M]. Beijing: Science Press, 2013. (in Chinese)

    [3]

    胡桂胜, 陈宁生, 邓虎. 基于GIS的西藏林芝地区泥石流易发与危险区分析[J]. 水土保持研究,2012,19(3):195 − 199. [HU Guisheng, CHEN Ningsheng, DENG Hu. Analysis of debris flow-prone and dangerous area in Nyingchi of Tibet Based on GIS[J]. Bulletin of Soil and Water Conservation,2012,19(3):195 − 199. (in Chinese with English abstract)

    [4]

    张永双, 成余粮, 姚鑫, 等. 四川汶川地震-滑坡-泥石流灾害链形成演化过程[J]. 地质通报,2013,32(12):1900 − 1910. [ZHANG Yongshuang, CHENG Yuliang, YAO Xin, et al. The evolution process of Wenchuan earthquake-landslide-debris flow geohazard chain[J]. Geologtcal Bulletin of China,2013,32(12):1900 − 1910. (in Chinese with English abstract)

    [5]

    ZHANG Y, CHENG Y, YIN Y, et al. High-position debris flow: A long-term active geohazard after the Wenchuan earthquake[J]. Engineering Geology,2014,180:45 − 54. doi: 10.1016/j.enggeo.2014.05.014

    [6]

    梁京涛, 成余粮, 王军, 等. 基于无人机遥感技术的汶川震区典型高位泥石流动态监测—以绵竹市文家沟泥石流为例[J]. 中国地质灾害与防治学报,2013,24(3):54 − 61. [LIANG Jingtao, CHENG Yuliang, WANG Jun, et al. Monitoring of a typical high position debris flow dynamic change in Wenchuan earehquake areas with unmanned aerial vehicles case study of Wenjiagou debris flows in Mianzhu county[J]. The Chinese Journal of Geological Hazard and Control,2013,24(3):54 − 61. (in Chinese with English abstract)

    [7]

    魏昌利, 何元宵, 张瑛, 等. 汶川地震灾区高位泥石流成灾模式分析[J]. 中国地质灾害与防治学报,2013,24(4):52 − 60. [WEI Changli, HE Yuanxiao, ZHANG Ying, et al. Study on high debris flow model in Wenchuan earthquake disaster area[J]. The Chinese Journal of Geological Hazard and Control,2013,24(4):52 − 60. (in Chinese with English abstract)

    [8]

    张文敬. 南迦巴瓦峰的跃动冰川[J]. 冰川冻土,1983(4):45 − 76. [ZHANG Wenjing. A surging glacier in the Nanjiabawa peak area, Himalayas[J]. Journal of Glaciology and Geocryology,1983(4):45 − 76. (in Chinese with English abstract)

    [9]

    韩立明. 雅鲁藏布江卧龙至直白河段地质灾害发育特征及危险性评价[D]. 成都: 成都理工大学, 2018.

    HAN Liming. Geological hazard characteristics and risk assessment of Brahmaputra from Wolong to Zhibai stream segment[D]. Chengdu: Chengdu University of Technology, 2018. (in Chinese with English abstract)

    [10]

    中国地质灾害防治工程行业协会. 地质灾害InSAR监测技术指南: T00/CAGHP 013-2017 [S]. 北京: 中国地质大学出版社, 2017.

    China Association of Geological Disaster Prevention and Control Engineering. Technical Guide for InSAR monitoring of geological disasters: T00/CAGHP 013-2017 [S]. Beijing: China University of Geosciences Press, 2017. (in Chinese)

    [11]

    中国地质调查局. 遥感地质解译方法指南(1: 5万、1: 25万): DD 2011-03 [S]. 北京: 地质出版社, 2011.

    China Geological Survey. Remote sensing geological interpretation method guide (1: 50000, 1: 250000): DD 2011-03 [S]. Beijing: Geological Publishing House, 2011. (in Chinese)

    [12]

    丁林, 钟大赉, 潘裕生, 等. 东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据[J]. 科学通报,1995(16):1497 − 1500. [DING Lin, ZHONG Dalai, PAN Yusheng, et al. Fission track evidence for rapid uplift since the Pliocene in the eastern Himalaya tectonic junction[J]. Chinese Science Bulletin,1995(16):1497 − 1500. (in Chinese with English abstract) doi: 10.3321/j.issn:0023-074X.1995.16.018

    [13]

    刘桂芳, 卢鹤立. 1961~2005年来青藏高原主要气候因子的基本特征[J]. 地理研究,2010,29(12):2281 − 2288. [LIU Guifang, LU Heli. Basic characteristics of major climatic factors on Qinghai-Tibet Plateau in recent 45 years[J]. Geographical Research,2010,29(12):2281 − 2288. (in Chinese with English abstract)

    [14]

    韩培锋, 王镁河, 姜兆华, 等. 西藏吉隆县地质灾害及其影响因素分析[J]. 中国地质灾害与防治学报,2020,31(2):111 − 118. [HAN Peifeng, WANG Meihe, JIANG Zhaohua, et al. Geological disasters and their influencing factors in Jilong County, Tibet[J]. The Chinese Journal of Geological Hazard and Control,2020,31(2):111 − 118. (in Chinese with English abstract)

    [15]

    段学良, 马凤山, 郭捷, 等. 基于Massflow模型的西藏仁布杰仲沟泥石流运动特征分析[J]. 中国地质灾害与防治学报,2019,30(6):25 − 33. [DUAN Xueliang, MA Fengshan, GUO Jie, et al. Movement characteristics of Jiezhonggou debris flow of Renbu, Tibet based on massflow model,[J]. The Chinese Journal of Geological Hazard and Control,2019,30(6):25 − 33. (in Chinese with English abstract)

    [16]

    高波, 张佳佳, 王军朝, 等. 西藏天摩沟泥石流形成机制与成灾特征[J]. 水文地质工程地质,2019,46(5):144 − 153. [GAO Bo, ZHANG Jiajia, WANG Junchao, et al. Formation mechanism and disaster characteristics of debris flow in the Tianmo gully in Tibet[J]. Hydrogeology & Engineering Geology,2019,46(5):144 − 153. (in Chinese with English abstract)

    [17]

    章旭, 郝红兵, 刘康林, 等. 西藏加查象牙泉水文地球化学特征及成因[J]. 水文地质工程地质,2019,46(4):1 − 9. [ZHANC Xu, HAO Hongbing, LIU Kanglin, et al. Hydrogeochemical characteristics and formation of the Ivory Spring in Jiacha County of Tibet[J]. Hydrogeology & Engineering Geology,2019,46(4):1 − 9. (in Chinese with English abstract)

  • 加载中

(8)

(2)

计量
  • 文章访问数:  1624
  • PDF下载数:  66
  • 施引文献:  0
出版历程
收稿日期:  2021-05-21
修回日期:  2021-05-25
刊出日期:  2021-06-25

目录