中国地质环境监测院
中国地质灾害防治工程行业协会
主办

不当钻探施工引发的滑坡变形加剧机理

罗晓娟. 不当钻探施工引发的滑坡变形加剧机理——以浙江松阳范山头滑坡为例[J]. 中国地质灾害与防治学报, 2021, 32(3): 84-90. doi: 10.16031/j.cnki.issn.1003-8035.2021.03-11
引用本文: 罗晓娟. 不当钻探施工引发的滑坡变形加剧机理——以浙江松阳范山头滑坡为例[J]. 中国地质灾害与防治学报, 2021, 32(3): 84-90. doi: 10.16031/j.cnki.issn.1003-8035.2021.03-11
LUO Xiaojuan. Mechanism of the landslide deformation due to drilling of boreholes:A case study of Fanshantou landslide at Songyang County of Zhejiang Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 84-90. doi: 10.16031/j.cnki.issn.1003-8035.2021.03-11
Citation: LUO Xiaojuan. Mechanism of the landslide deformation due to drilling of boreholes:A case study of Fanshantou landslide at Songyang County of Zhejiang Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 84-90. doi: 10.16031/j.cnki.issn.1003-8035.2021.03-11

不当钻探施工引发的滑坡变形加剧机理

详细信息
    作者简介: 罗晓娟(1982-),女,湖北宜昌人,硕士,高级工程师,主要从事高边坡与地质灾害防治相关研究。E-mail:253885502@qq.com
  • 中图分类号: P642.22

Mechanism of the landslide deformation due to drilling of boreholes:A case study of Fanshantou landslide at Songyang County of Zhejiang Province

  • 浙江省松阳县范山头滑坡是具有两层滑动带的中型土质滑坡,地质条件复杂,2010年初次发现之后,一直处于蠕动变形阶段。2018年7月开始对其采取虹吸排水工程治理。在治理施工过程中,钻探用水大量漏失,导致滑坡深部出现57~74 mm的累计变形量直至测斜孔剪断,滑坡地表裂缝最大宽度达到了17.5 mm。停止钻探,启动虹吸排水之后,滑坡裂缝停止扩大,深部位移量控制在了1 mm之内。本文基于此次实际抢险过程中的各项监测数据,分析蠕动型滑坡对地下水径流场变化的双向响应过程,并应用水力学和有效应力原理对这个响应过程进行机制分析。得出了在设计计算和工程实践中,必须充分考虑地下水径流渗透力,不可盲目忽略不计的结论,并再次验证排出滑坡体内的地下水是增强滑坡稳定性的快速有效手段之一。

  • 加载中
  • 图 1  范山头滑坡平面图

    Figure 1. 

    图 2  范山头滑坡主剖面图

    Figure 2. 

    图 3  范山头滑坡物探剖面

    Figure 3. 

    图 4  位移、降雨量监测数据

    Figure 4. 

    图 5  降雨量方格图(2018年10月)

    Figure 5. 

    图 6  施工期裂缝宽度曲线图

    Figure 6. 

    图 7  钻孔深部位移曲线图

    Figure 7. 

    图 8  范山头滑坡水文地质剖面图

    Figure 8. 

    图 9  虹吸排水后滑坡地下水位变化图(监测SC02孔)

    Figure 9. 

    图 10  虹吸排水后裂缝宽度曲线图

    Figure 10. 

    表 1  范山头滑坡裂缝统计表

    Table 1.  List of Characteristics of Cracks

    裂缝走向/(°)条数比例/%发育部位形态
    100~1203251.6滑坡体中部、后缘直线形
    5~301727.4滑坡体右翼和前部直线形
    150~1751117.7滑坡体左翼直线形
    8111.61滑坡体后缘弧形
    13011.61滑坡体后缘弧形
    下载: 导出CSV
  • [1]

    王恭先. 滑坡学与滑坡防治技术文集[M]. 北京: 人民交通出版社, 2010: 130−131.

    WANG Gongxian. Anthology of landslide science and landslide prevention technology[M]. Beijing: China Communication Press, 2010: 130−131. (in Chinese)

    [2]

    孙淼军, 唐辉明, 王潇泓, 等. 蠕动型滑坡滑带土蠕变特性研究[J]. 岩土力学,2017,38(2):385 − 392. [SUN Miaojun, TANG Huiming, WANG Xiaohong, et al. Creep properties of sliding-zone soil from a creeping landslide[J]. Rock and Soil Mechanics,2017,38(2):385 − 392. (in Chinese with English abstract)

    [3]

    夏敏, 任光明, 马鑫磊, 等. 库水位涨落条件下滑坡地下水渗流场动态特征[J]. 西南交通大学学报,2014,49(3):399 − 405. [XIA Min, REN Guangming, MA Xinlei, et al. Dynamic responses of groundwater seepage of landslide influenced by fluctuaion of reservoior water level[J]. Journal of Southwest Jiaotong University,2014,49(3):399 − 405. (in Chinese with English abstract) doi: 10.3969/j.issn.0258-2724.2014.03.005

    [4]

    许旭堂, 简文彬. 滑坡对降雨的动态响应特征及其监测预警研究[J]. 工程地质学报,2015,23(2):203 − 210. [XU Xutang, JIAN Wenbin. Dynamic response of pengkeng landslide to rainfall and its monitoring and early warning[J]. Journal of Engineering Geology,2015,23(2):203 − 210. (in Chinese with English abstract)

    [5]

    向家松, 文宝萍, 陈明, 等. 结构复杂滑坡活动对库水位变化的响应特征—以三峡库区柴湾滑坡为例[J]. 水文地质工程地质,2017,44(4):71 − 84. [XIANG Jiasong, WEN Baoping, CHEN Ming, et al. Activity response of a landslide with complex structure to fluctuation of reservoir water level: a case study of the Chaiwan landslide in the Three Gorges Reservoir[J]. Hydrogeology & Engineering Geology,2017,44(4):71 − 84. (in Chinese with English abstract)

    [6]

    尹晓萌, 晏鄂川, 杜毅, 等. 库水位下降条件下堆积层滑坡稳定性分析[J]. 中国地质灾害与防治学报,2017,28(3):8 − 15. [YIN Xiaomeng, YAN Echuan, DU Yi, et al. Stability of colluvial landslide with drawdown of reservoir water level[J]. The Chinese Journal of Geological Hazard and Control,2017,28(3):8 − 15. (in Chinese with English abstract)

    [7]

    尹晓萌, 晏鄂川, 刘旭耀,等. 对土体稳定性计算中地下水作用力的探讨[J]. 岩土力学,2019,40(1):1 − 9. [YIN Xiaomeng, YAN Echuan, LIU Xuyao, et al. Study on force of undergroud water in the soil stability calculation[J]. Rock and Soil Mechanics,2019,40(1):1 − 9. (in Chinese with English abstract)

    [8]

    李广信. 关于有效应力原理的几个问题[J]. 岩土工程学报,2011,33(2):315 − 320. [LI Guangxin. Some problems about principle of effective stress[J]. Chinese Journal of Geotechnical Engineering,2011,33(2):315 − 320. (in Chinese with English abstract)

    [9]

    陈仲颐, 周景星, 王洪瑾. 土力学[M]. 北京: 清华大学出版社, 1994: 56-60.

    CHEN Zhongyi, ZHOU Jingxing, WANG Hongjin. Soil mechanic[M]. Beijing: Tsinghua University Press, 1994: 56-60. (in Chinese)

    [10]

    殷跃平. 中国滑坡防治工程理论与实践[J]. 水文地质工程地质,1998,25(1):5 − 9. [YIN Yueping. Theory and practice of Chinese landslide prevention and control engineering[J]. Hydrogeology & Engineering Geology,1998,25(1):5 − 9. (in Chinese with English abstract)

    [11]

    苏永华, 蹇宜霖, 张航. 基于滑带软化的滑坡渐进破坏机制分析[J]. 公路工程,2019,44(1):32 − 37. [SHU Yonghua,JIAN Yilin, ZHANG Hang. Analysis of landslide progressive failure mechanism based on sliding zone softening[J]. Highway Engineering,2019,44(1):32 − 37. (in Chinese with English abstract)

    [12]

    屠义伟. 公路浅表型滑坡检测技术选用及施工技术应用研究[J]. 公路工程,2018,43(3):297 − 302. [TU Yiwei. Study on selection of highway shallow phenotypic landslide detection technology and application of construction technology[J]. Highway Engineering,2018,43(3):297 − 302. (in Chinese with English abstract)

  • 加载中

(10)

(1)

计量
  • 文章访问数:  527
  • PDF下载数:  24
  • 施引文献:  0
出版历程
收稿日期:  2020-08-18
修回日期:  2020-12-21
刊出日期:  2021-06-25

目录