中国地质环境监测院
中国地质灾害防治工程行业协会
主办

黄土深基坑潜水区降水诱发地面沉降的简化算法

胡长明, 林成. 黄土深基坑潜水区降水诱发地面沉降的简化算法[J]. 中国地质灾害与防治学报, 2021, 32(3): 76-83, 139. doi: 10.16031/j.cnki.issn.1003-8035.2021.03-10
引用本文: 胡长明, 林成. 黄土深基坑潜水区降水诱发地面沉降的简化算法[J]. 中国地质灾害与防治学报, 2021, 32(3): 76-83, 139. doi: 10.16031/j.cnki.issn.1003-8035.2021.03-10
HU Changming, LIN Cheng. Simplified calculation of settlement due to dewatering of phreatic aquifer in loess area[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 76-83, 139. doi: 10.16031/j.cnki.issn.1003-8035.2021.03-10
Citation: HU Changming, LIN Cheng. Simplified calculation of settlement due to dewatering of phreatic aquifer in loess area[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 76-83, 139. doi: 10.16031/j.cnki.issn.1003-8035.2021.03-10

黄土深基坑潜水区降水诱发地面沉降的简化算法

  • 基金项目: 国家自然科学基金项目(51408463);陕西省教育厅专项科研计划项目(17JK0424)
详细信息
    作者简介: 胡长明(1963-),男,博士,教授,主要从事土木工程建造与管理方面的研究。E-mail:hu.tm@163.com
  • 中图分类号: P642.26

Simplified calculation of settlement due to dewatering of phreatic aquifer in loess area

  • 针对黄土地区深基坑降水导致地层不均匀沉降,危及坑周建筑物的问题,论文基于基坑降水诱发地面沉降机理分析,以分层总和法和剪切位移法为基础,推导出降水引起地面沉降的简化计算公式。在忽略群井效应和土层侧向变形的前提下,依据Dupuit公式得出基坑降水曲线方程,将坑周土体以降水曲线为界分为疏干区和饱和区。引入修正系数,对黄土地区不同性质土层因孔隙水压力减小产生的有效应力增量修正,同时考虑桩-土界面侧摩阻力对土体的约束作用,分别计算距井轴不同距离处的沉降量,叠加后得出最终的沉降值。对比数值模拟计算结果及工程实例监测值,分析表明:在桩-土交界处,侧摩阻力对土体竖向沉降的约束作用最明显;在1.5倍降水深度范围内的沉降计算值精度远高于规范算法,能够较好的预测降水期间黄土地区坑周不同距离处的地面沉降量。

  • 加载中
  • 图 1  单井降水示意图

    Figure 1. 

    图 2  地下水位下降时桩-土剪切应力传递性状模式

    Figure 2. 

    图 3  围护结构侧摩阻力传递示意图

    Figure 3. 

    图 4  降水井、观测井及各监测点平面布置图

    Figure 4. 

    图 5  地下水位累计变化图

    Figure 5. 

    图 6  基坑周边地面沉降变化曲线

    Figure 6. 

    图 7  围护结构对地面沉降的约束量

    Figure 7. 

    图 8  网格划分后的基坑模型

    Figure 8. 

    图 9  降水后孔压云图

    Figure 9. 

    图 10  基坑降水向量

    Figure 10. 

    图 11  地表沉降曲线

    Figure 11. 

    图 12  不同距离地面沉降计算值与监测值对比

    Figure 12. 

    表 1  地层物理力学指标

    Table 1.  Physical and mechanical parameters of soil formation

    岩土名称层厚/m弹性模量/
    (kN·m−2
    泊松比容重/
    (kN·m−3
    黏聚力/
    kPa
    内摩擦角/
    (°)
    杂填土280000.3716.52516.0
    素填土3213500.3515.13317.3
    新黄土5161000.2815.24519.0
    饱和软黄土2164500.3517.03517.0
    古土壤5196000.3018.64518.5
    老黄土10196000.3319.24517.5
    粉质黏土13206500.2919.44521.0
    下载: 导出CSV

    表 2  距降水井不同距离地面沉降计算值

    Table 2.  The settlement calculation values around foundation pit from different distance

    计算方法最终地面沉降值/mm
    距井
    2 m
    距井
    4 m
    距井
    10 m
    距井
    16 m
    距井
    22 m
    距井
    28 m
    规范算法64.254.241.232.726.221.8
    进行修正24.820.616.012.710.28.5
    考虑围护结构约束21.818.914.912.19.88.2
    下载: 导出CSV
  • [1]

    高旭, 郭建波, 晏鄂川. 考虑止水帷幕的深基坑降水预测解析计算[J]. 岩土力学,2018,39(4):1431 − 1439. [GAO Xu, GUO Jianbo, YAN Echuan. Dewatering forecast of deep foundation pit considering waterproof curtain using analytic approach[J]. Rock and Soil Mechanics,2018,39(4):1431 − 1439. (in Chinese with English abstract)

    [2]

    XU Y S, WU H N, WANG B Z F, et al. Dewatering induced subsidence during excavation in a Shanghai soft deposit[J]. Environmental Earth Sciences,2017,76(9):1 − 15.

    [3]

    WANG J X, DENNG Y S, MA R Q, et al. Field experiment and numerical simulation of coupling non-Darcy flow caused by curtain and pumping well in foundation pit dewatering[J]. Journal of Hydrology,2017,549(6):277 − 293.

    [4]

    张莲花, 李荣强, 刘德坊. 基坑降水总应力变化时有效应力增量和沉降量计算[J]. 中国地质灾害与防治学报,2001,12(1):75 − 77. [ZHANG Lianhua, LI Rongqiang, LIU Defang. The calculation of effective stress and settlement based on the variable total stress in pit dewatering[J]. The Chinese Journal of Geological Hazard and Control,2001,12(1):75 − 77. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-8035.2001.01.018

    [5]

    吴意谦, 朱彦鹏. 考虑疏干带非饱和土影响下基坑降水引起地面沉降的计算[J]. 工程力学,2016,33(3):179 − 187. [WU Yiqian, ZHU Yanpeng. Calculation of settlement considering unsaturated soil influence on the dewatering of foundation pits[J]. Engineering Mechanics,2016,33(3):179 − 187. (in Chinese with English abstract)

    [6]

    HUGO A. LOÁICIGA. Consolidation Settlement in Aquifers Caused by Pumping[J]. Geotechnical and Geoenvironmental Engineering,2013,62(9):1191 − 1204.

    [7]

    娄平, 赵星, 汤卓, 等. 朝阳站富水砂卵石层施工动态降水控制技术研究[J]. 铁道科学与工程学报,2019,16(2):457 − 463. [LOU Ping, ZHAO Xing, TANG Zhuo, et al. Study on dynamic dewatering control technology for water-rich sandy gravel layer in Chaoyang station[J]. Journal of Railway Science and Engineering,2019,16(2):457 − 463. (in Chinese with English abstract)

    [8]

    杨清源, 赵伯明. 潜水层基坑降水引起地表沉降试验与理论研究[J]. 岩石力学与工程学报,2018,37(6):1506 − 1519. [YANG Qingyuan, ZHAO Boming. Experimental and theoretical study on the surface subsidence by dewatering of foundation pit in phreatic aquifer[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(6):1506 − 1519. (in Chinese with English abstract)

    [9]

    苑莲菊, 李振栓, 武胜忠, 等. 渗流工程力学及应用[M]. 北京: 中国建材工业出版社, 2001.

    YUAN Lianju, LI Zhenshuan, WU Shengzhong, et al. Seepage engineering mechanics and application[M]. Beijing: China Architecture& Building Press, 2001. (in Chinese)

    [10]

    GORDON T, HSEIN C K. Simplified model for wall deflection and ground-surface settlement caused by braced excavation in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering,2007,133(6):731 − 747. doi: 10.1061/(ASCE)1090-0241(2007)133:6(731)

    [11]

    胡世春. 西安地铁深基坑降水及降水引起的地表沉降分析[D]. 西安: 西安建筑科技大学, 2014.

    HU Shichun. Analysis of ground settlement caused by precipitation and precipitation Xi’an subway deep foundation pit[D]. Xi’an: Xi’an University of Architecture and Technology, 2014. (in Chinese with English abstract)

    [12]

    POULOS H G. A practical design approach for piles with negative friction[J]. Proceedings of the ICE-Geotechnical Engineering,2008,161(1):19 − 27. doi: 10.1680/geng.2008.161.1.19

    [13]

    汤光明. 悬挂式止水帷幕对深基坑降水的影响研究[D]. 西安: 西安建筑科技大学, 2011.

    TANG Guangming. The research of suspended waterproof curtain to the influence of deep foundation pit dewatering[D]. Xi’an : Xi’an University of Architecture and Technology, 2011. (in Chinese with English abstract)

    [14]

    郭海朋, 李文鹏, 王丽亚, 等. 华北平原地下水位驱动下的地面沉降现状与研究展望[J]. 水文地质工程地质, 2021, 48(3): 162-171.

    GUO Haipeng, LI Wenpeng, WANG Liya, et al. Present situation and research prospects of the land subsidence driven by groundwater levels in the North China Plain[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 162-171.(in Chinese with English abstract)

    [15]

    宋成年, 邓洋, 刘德兵, 等. 基坑不同水位降速下土石围堰松散粘质边坡渗流特性与开挖稳定性研究[J]. 水电能源科学, 2021, 39(2): 69-73.

    SONG Chengnian, DENG Yang, LIU Debing, et al. Study on seepage characteristics and excavation stability of loose cohesive slope of earth rock cofferdam under different dewatering speed of foundation pit[J]. Water Resources and Power, 2021, 39(2): 69-73.(in Chinese with English abstract)

    [16]

    张哲斐, 冯晓腊, 蔡兵华, 等. 深基坑多层承压含水层中混合井降水技术优化研究[J]. 安全与环境工程, 2021, 28(1): 85-94.

    ZHANG Zhefei, FENG Xiaola, CAI Binghua, et al. Optimization of precipitation technology of mixed wells in multi-layer confined aquifers of deep foundation pits[J]. Safety and Environmental Engineering, 2021, 28(1): 85-94.(in Chinese with English abstract)

    [17]

    李瑛, 陈东, 刘兴旺, 等. 悬挂式止水帷幕深基坑减压降水的简化计算方法[J]. 岩土力学, 2021, 42(3): 826-832.

    LI Ying, CHEN Dong, LIU Xingwang, et al. Simplified calculation method of decompression dewatering for deep excavation with suspended waterproof curtain[J]. Rock and Soil Mechanics, 2021, 42(3): 826-832.(in Chinese with English abstract)

  • 加载中

(12)

(2)

计量
  • 文章访问数:  1270
  • PDF下载数:  34
  • 施引文献:  0
出版历程
收稿日期:  2020-06-26
修回日期:  2020-08-03
刊出日期:  2021-06-25

目录