中国地质环境监测院
中国地质灾害防治工程行业协会
主办

强震区隧道软弱围岩洞口段桩-筏抗震措施的作用效果分析

崔光耀, 李鹏宇, 王庆建. 强震区隧道软弱围岩洞口段桩-筏抗震措施的作用效果分析[J]. 中国地质灾害与防治学报, 2021, 32(4): 106-112. doi: 10.16031/j.cnki.issn.1003-8035.2021.04-14
引用本文: 崔光耀, 李鹏宇, 王庆建. 强震区隧道软弱围岩洞口段桩-筏抗震措施的作用效果分析[J]. 中国地质灾害与防治学报, 2021, 32(4): 106-112. doi: 10.16031/j.cnki.issn.1003-8035.2021.04-14
CUI Guangyao, LI Pengyu, WANG Qingjian. Analysis on the effect of pile-raft anti-seismic measures for the tunnel section of weak surrounding rock in strong earthquake area[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(4): 106-112. doi: 10.16031/j.cnki.issn.1003-8035.2021.04-14
Citation: CUI Guangyao, LI Pengyu, WANG Qingjian. Analysis on the effect of pile-raft anti-seismic measures for the tunnel section of weak surrounding rock in strong earthquake area[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(4): 106-112. doi: 10.16031/j.cnki.issn.1003-8035.2021.04-14

强震区隧道软弱围岩洞口段桩-筏抗震措施的作用效果分析

  • 基金项目: 国家自然科学基金项目(51408008);北京市青年拔尖人才培育计划项目(CIT&TCD201704013);北京市属高校基本科研业务费项目(110052971921/061)
详细信息
    作者简介: 崔光耀(1983-),男,山东莒南人,博士,副教授,主要从事隧道与地下工程的教学与研究。E-mail:cyao456@163.com
  • 中图分类号: P694

Analysis on the effect of pile-raft anti-seismic measures for the tunnel section of weak surrounding rock in strong earthquake area

  • 为进一步提高地震时软弱围岩铁路隧道安全性及稳定性,以玉磨铁路新平隧道工程作为依托,利用FLAC3D数值模拟软件,对强震区隧道软弱围岩洞口段桩-筏抗震措施效果进行研究,对比分析了无加固措施、措施一(桩-拱结构)及措施二(桩-筏-拱结构)二衬的结构位移及内力,研究结果表明:措施一和措施二的竖向位移分别减小了1.35%、1.09%;措施一的边墙收敛几无变化(增大了0.44%);由于桩-筏-拱结构的整体稳定性较好,措施二的边墙收敛减小了30.49%;距离洞口最近的两个危险截面1和2处,措施一的最小安全系数提高了1.43%、6.71%,措施二的最小安全系数提高了145.91%、143.72%;综合位移及内力分析,措施二的抗震效果优于措施一,建议新平隧道洞口段采用桩-筏-拱结构进行抗震加固。

  • 加载中
  • 图 1  计算模型

    Figure 1. 

    图 2  加固措施

    Figure 2. 

    图 3  加速度时程曲线

    Figure 3. 

    图 4  断面布置

    Figure 4. 

    图 5  测点布置

    Figure 5. 

    图 6  二衬结构断面最小安全系数图

    Figure 6. 

    图 7  加固措施范围

    Figure 7. 

    图 8  二衬结构竖向位移云图

    Figure 8. 

    图 9  二衬结构横向位移云图

    Figure 9. 

    图 10  边墙收敛值

    Figure 10. 

    图 11  各监测断面内力

    Figure 11. 

    表 1  计算工况

    Table 1.  Calculation conditions

    工况类型加固措施
    无措施无加固措施
    措施一桩-拱结构
    措施二桩-筏-拱结构
    下载: 导出CSV

    表 2  材料物理力学参数

    Table 2.  Physical and mechanical parameters of the materials

    材料属性重度/(kN·m−3泊松比弹性摸量/GPa内摩擦角/(°)黏聚力/MPa
    Ⅴ级围岩190.42.0240.2
    Ⅳ级围岩210.35.0360.5
    Ⅱ级围岩250.220511.5
    初支230.220
    二衬240.227
    加固圈230.357
    250.228
    筏板250.228
    下载: 导出CSV

    表 3  二衬结构的最大位移及控制效果

    Table 3.  Maximum displacement and control effect of second liner structure

    位移无措施/mm措施一/mm抗震效果/%措施二/mm抗震效果/%
    竖向11.8411.681.3511.711.09
    横向21.5423.41−8.6923.62−9.66
    下载: 导出CSV

    表 4  最大边墙收敛及抗震效果

    Table 4.  Maximum side convergence value and anti-seismic effect

    工况边墙收敛最大值/mm抗震效果/%
    无措施49.66
    措施一49.88−0.44
    措施二34.5230.49
    下载: 导出CSV

    表 5  监测断面最小安全系数及抗震效果

    Table 5.  Monitoring section minimum safety factor and anti-seismic effect

    监测断面无措施措施一抗震效果/%措施二抗震效果/%
    10.9780.9921.43 (↑)2.405145.91 (↑)
    21.0431.1136.71 (↑)2.542143.72 (↑)
    32.1162.92138.04 (↑)2.63724.62 (↑)
    42.1944.64111.49 (↑)5.165135.41 (↑)
    下载: 导出CSV
  • [1]

    何乐平, 罗舒月, 胡启军, 等. 基于理想点-可拓云模型的隧道围岩稳定性评价[J]. 中国地质灾害与防治学报,2021,32(2):126 − 134. [HE Leping, LUO Shuyue, HU Qijun, et al. Stability evaluation of tunnel surrounding rock based on ideal point-extension cloud model[J]. The Chinese Journal of Geological Hazard and Control,2021,32(2):126 − 134. (in Chinese with English abstract)

    [2]

    崔光耀, 宋博涵, 肖剑, 等. 隧道洞口浅埋偏压段两种围岩注浆措施的抗震效果分析[J]. 中国地质灾害与防治学报,2020,31(5):98 − 104. [CUI Guangyao, SONG Bohan, XIAO Jian, et al. Anti-seismic effect analysis of two kinds of surrounding rock grouting measures in the shallow and eccentric pressure section of tunnel portal[J]. The Chinese Journal of Geological Hazard and Control,2020,31(5):98 − 104. (in Chinese with English abstract)

    [3]

    皇民, 苑俊杰, 赵玉如, 等. 高烈度区双洞隧道洞口段地震响应分析与振动台模型试验[J]. 中国地质灾害与防治学报,2020,31(1):113 − 119. [HUANG Min, YUAN Junjie, ZHAO Yuru, et al. Seismic response analysis and shaking table test realization of double tunnel entrance in high intensity zone[J]. The Chinese Journal of Geological Hazard and Control,2020,31(1):113 − 119. (in Chinese with English abstract)

    [4]

    申玉生, 高波, 王英学. 强震区山岭隧道洞口段结构动力特性分析[J]. 岩石力学与工程学报,2009,28(增刊1):3131 − 3136. [SHEN Yusheng, GAO Bo, WANG Yingxue. Structural dynamic properties analysis for portal part of mountain tunnel in strong earthquake area[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(Sup1):3131 − 3136. (in Chinese with English abstract)

    [5]

    WANG Z Z, JIANG Y J, ZHU C A. Seismic energy response and damage evolution of tunnel lining structures[J]. European Journal of Environmental and Civil Engineering,2019,23(6):758 − 770. doi: 10.1080/19648189.2017.1304283

    [6]

    王泽军, 陈铁林, 崔光耀, 等. 强震区隧道洞口软硬岩交接段围岩注浆抗震措施效果分析[J]. 中国地质灾害与防治学报,2018,29(4):96 − 102. [WANG Zejun, CHEN Tielin, CUI Guangyao, et al. Aseismic effect of grouting measures for tunnel portal structure at interface between soft and hard rock in high-intensity earthquake zone[J]. The Chinese Journal of Geological Hazard and Control,2018,29(4):96 − 102. (in Chinese with English abstract)

    [7]

    侯森, 陶连金, 李书龙, 等. 山岭隧道洞口段设置减震层的振动台模型试验研究[J]. 世界地震工程,2014,30(3):187 − 195. [HOU Sen, TAO Lianjin, LI Shulong, et al. Shaking table test for dynamic response in portal section of mountain tunnel with shock absorption layer[J]. World Earthquake Engineering,2014,30(3):187 − 195. (in Chinese with English abstract)

    [8]

    耿萍, 曹东杰, 唐金良, 等. 铁路隧道洞口合理抗震设防长度[J]. 西南交通大学学报,2012,47(6):942 − 948. [GENG Ping, CAO Dongjie, TANG Jinliang, et al. Rational seismic protective length for portal of railway tunnel[J]. Journal of Southwest Jiaotong University,2012,47(6):942 − 948. (in Chinese with English abstract) doi: 10.3969/j.issn.0258-2724.2012.06.006

    [9]

    崔光耀, 王李斌, 王明年, 等. 强震区隧道软岩洞口段刚柔并济抗减震措施模型试验研究[J]. 振动工程学报,2019,32(1):29 − 36. [CUI Guangyao, WANG Libin, WANG Mingnian, et al. Model test study of rigid-flexible combined anti-seismic measures of soft rock tunnel portal part in meizoseismal area[J]. Journal of Vibration Engineering,2019,32(1):29 − 36. (in Chinese with English abstract)

    [10]

    崔光耀, 麻建飞, 肖剑. 地震高烈度区隧道软硬围岩交接段减震层减震效果分析[J]. 中国地质灾害与防治学报,2020,31(4):113 − 120. [CUI Guangyao, MA Jianfei, XIAO Jian. Effectiveness of damping control technology of shock-absorbing layer of soft and hard surrounding rock junctions of tunnels in high-intensity earthquake zone[J]. The Chinese Journal of Geological Hazard and Control,2020,31(4):113 − 120. (in Chinese with English abstract)

    [11]

    曹小平. 强震作用下山岭隧道洞口段地震响应分析及减震措施研究[J]. 岩石力学与工程学报,2013,32(10):2160. [CAO Xiaoping. Research on dynamic response at portal section of mountain tunnel under intense earthquake and shock absorption measure[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(10):2160. (in Chinese with English abstract)

    [12]

    张乾翼, 赖国泉. 某高速公路隧道洞口错落体变形原因与治理措施分析[J]. 中国地质灾害与防治学报,2020,31(1):25 − 29. [ZHANG Qianyi, LAI Guoquan. Analysis of deformation and controlling measures of a cut slope at a highway tunnel portal with faulted rock mass[J]. The Chinese Journal of Geological Hazard and Control,2020,31(1):25 − 29. (in Chinese with English abstract)

    [13]

    崔光耀, 王明年, 林国进, 等. 汶川地震公路隧道洞口段震害机理及抗震对策研究[J]. 现代隧道技术,2011,48(6):6 − 10. [CUI Guangyao, WANG Mingnian, LIN Guojin, et al. Study of the earthquake damage mechanism and aseismatic countermeasure of a highway tunnel portal section in the Wenchuan seismic disaster area[J]. Modern Tunnelling Technology,2011,48(6):6 − 10. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-6582.2011.06.002

    [14]

    国家铁路局. 铁路隧道设计规范: TB 10003—2016[S]. 北京: 中国铁道出版社, 2017.

    National Railwary Administration of the People's Republic of China, Code for design of railway tunnel: TB 10003—2016[S]. Beijing: China Railway Publishing House, 2017. (in Chinese)

  • 加载中

(11)

(5)

计量
  • 文章访问数:  1554
  • PDF下载数:  21
  • 施引文献:  0
出版历程
收稿日期:  2020-07-07
修回日期:  2020-07-31
刊出日期:  2021-08-25

目录