中国地质环境监测院
中国地质灾害防治工程行业协会
主办

机器学习模型在滑坡易发性评价中的应用

刘福臻, 王灵, 肖东升. 机器学习模型在滑坡易发性评价中的应用[J]. 中国地质灾害与防治学报, 2021, 32(6): 98-106. doi: 10.16031/j.cnki.issn.1003-8035.2021.06-12
引用本文: 刘福臻, 王灵, 肖东升. 机器学习模型在滑坡易发性评价中的应用[J]. 中国地质灾害与防治学报, 2021, 32(6): 98-106. doi: 10.16031/j.cnki.issn.1003-8035.2021.06-12
LIU Fuzhen, WANG Ling, XIAO Dongsheng. Application of machine learning model in landslide susceptibility evaluation[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 98-106. doi: 10.16031/j.cnki.issn.1003-8035.2021.06-12
Citation: LIU Fuzhen, WANG Ling, XIAO Dongsheng. Application of machine learning model in landslide susceptibility evaluation[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 98-106. doi: 10.16031/j.cnki.issn.1003-8035.2021.06-12

机器学习模型在滑坡易发性评价中的应用

  • 基金项目: 国家自然科学基金项目(51774250)
详细信息
    作者简介: 刘福臻(1973-)男,副教授,主要研究方向为地质灾害防治。E-mail:2233896@qq.com
    通讯作者: 王 灵(1996-),男,硕士,主要研究方向为地质灾害防治。E-mail: 635370097@qq.com
  • 中图分类号: P642.22

Application of machine learning model in landslide susceptibility evaluation

More Information
  • 机器学习在滑坡的易发性评价中面临两个难点,一是评价指标的客观量化,二是训练样本的选择。鉴于此,采用频率比法实现了评价指标的客观量化,利用k均值聚类算法实现了非滑坡样本数据的筛选。结果表明,以k均值聚类算法筛选非滑坡为前提,神经网络的训练精度由73%提升到了97%,支持向量机的训练精度由75%提升到了96%。基于GIS平台,将神经网络和支持向量机模型计算的全区易发性指数按自然断点法分为五个区域,分区图与历史灾害点的叠加分析统计结果显示,神经网络在全局范围内的评价结果优于支持向量机模型,全局精度分别为76%和74%。研究结果可为南江县的防灾减灾工作提供参考。

  • 加载中
  • 图 1  研究区地理位置及历史滑坡点分布图

    Figure 1. 

    图 2  因子量化结果

    Figure 2. 

    图 3  训练集ROC

    Figure 3. 

    图 4  测试集ROC

    Figure 4. 

    图 5  易发性分区图

    Figure 5. 

    图 6  模型全局精度验证曲线

    Figure 6. 

    表 1  数据源

    Table 1.  Data source

    数据名称数据类型数据来源
    滑坡灾害点excel南江县1∶5万地质灾害详查
    DEM栅格地理空间数据云
    1∶25万地质图栅格91卫图
    下载: 导出CSV

    表 2  因子量化结果

    Table 2.  Results of factor quantification

    因子因子二级属性sinixi
    坡度/(°)0~10650642671.085425029
    10~168036281071.403446432
    16~22805749961.255852346
    22~29763630530.731576946
    29~34375968200.560720245
    34~43311624150.507373154
    >437285010.144689684
    坡向438393280.673227029
    东北416896370.935494243
    450786511.192523317
    东南479436491.077289835
    510916501.031543684
    西南491470601.286830544
    西499440390.823092053
    西北496754450.954856841
    坡型<−113199410.079856989
    −1 ~ −0.3832505660.835649597
    −0.3 ~ 0.111410121271.173223173
    0. 1 ~ 0.814911621531.081517936
    >0.8187418120.674896336
    水系/m<200331210401.272986136
    200~500479405641.407163424
    500~800455006481.111965305
    800~1200558891651.225895254
    1200~1500381262340.939988453
    1500~2000548717510.979690471
    2000~50001023859570.586815838
    >5000574100.000000000
    岩组K18826101011.206200914
    J310249621201.234072302
    J1-2266052773.050642528
    T1-2223391221.038064004
    P2-39449320.223098927
    Pz1360578210.613885241
    Z426090140.346332954
    ξγNh32620820.064625291
    Pt214876900.000000000
    S1-23093800.000000000
    高程/m332 ~ 604424239842.087064249
    604 ~ 7687139001211.786549738
    768 ~ 924647443771.253592279
    924 ~ 1094538137440.861840594
    1094 ~1273451639230.536788894
    1273 ~ 146437720970.195606426
    1464 ~ 167027641530.114400197
    1670 ~ 189723687700.000000000
    1897 ~ 249311823200.000000000
    地形起伏/m9~98543341641.241579747
    98~1519979071201.267530155
    151~2029292501051.191033159
    202~258720598530.775264576
    258~329447958130.305895564
    329~65514503740.290702192
    下载: 导出CSV

    表 3  因子相关性分析结果

    Table 3.  Results of factor correlation analysis

    因子坡度坡向坡型水系岩组高程地形
    坡度1.000.020.15−0.050.160.160.61
    坡向0.021.000.020.010.010.000.00
    坡型0.150.021.000.010.090.090.17
    水系−0.050.010.011.000.120.13−0.06
    岩组0.160.010.090.121.000.190.25
    高程0.160.000.090.130.191.000.27
    地形0.610.000.17−0.060.250.271.00
    下载: 导出CSV

    表 4  k均值聚类统计分析结果

    Table 4.  Results of k-means clustering statistical analysis

    聚类结果栅格数量滑坡点数相对滑坡比
    0909306370.428902710
    18361141061.336310845
    2963716280.306249991
    3265935773.051984680
    48090201111.446208281
    下载: 导出CSV

    表 5  神经网络分区统计结果

    Table 5.  Partition statistics results of neural network

    易发性等级栅格数量分区面积比例/%滑坡点数相对滑坡频率比
    不易发133365535.24350.276625155
    低易发65422117.29380.612246399
    中易发73845419.51700.999175361
    高易发62675916.561031.732222873
    极高易发43100211.391132.763543349
    下载: 导出CSV

    表 6  支持向量机分区统计结果

    Table 6.  Partition statistical results of support vector machines

    易发性等级栅格数量分区面积比例/%滑坡点数相对滑坡频率比
    不易发112552429.74430.402699248
    低易发94345224.93490.547448656
    中易发83082921.96720.913456715
    高易发46372812.25871.977529889
    极高易发42055811.111082.706854924
    下载: 导出CSV
  • [1]

    邱海军. 区域滑坡崩塌地质灾害特征分析及其易发性和危险性评价研究: 以宁强县为例[D]. 西安: 西北大学, 2012.

    QIU Haijun. Study on the regional landslide characteristic analysis and hazard assessment: A case study of Ningqiang County[D]. Xi'an: Northwest University, 2012. (in Chinese with English abstract)

    [2]

    唐亚明, 张茂省, 李林, 等. 滑坡易发性危险性风险评价例析[J]. 水文地质工程地质,2011,38(2):125 − 129. [TANG Yaming, ZHANG Maosheng, LI Lin, et al. Discrimination to the landslide susceptibility, hazard and risk assessment[J]. Hydrogeology & Engineering Geology,2011,38(2):125 − 129. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2011.02.022

    [3]

    杨秀梅. 基于GIS的地质灾害危险性评价[D]. 兰州: 兰州大学, 2008.

    YANG Xiumei. Geological hazard risk assessment based on GIS[D]. Lanzhou: Lanzhou University, 2008. (in Chinese with English abstract)

    [4]

    胡芹龙, 王运生. 基于GIS的川西地貌过渡带滑坡灾害易发性评价[J]. 成都理工大学学报(自然科学版),2018,45(6):746 − 753. [HU Qinlong, WANG Yunsheng. The susceptibility assessment of geological disasters in geomorphic transition zone based on GIS, western Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2018,45(6):746 − 753. (in Chinese with English abstract)

    [5]

    郭长宝, 唐杰, 吴瑞安, 等. 基于证据权模型的川藏铁路加查: 朗县段滑坡易发性评价[J]. 山地学报,2019,37(2):240 − 251. [GUO Changbao, TANG Jie, WU Ruian, et al. Landslide susceptibility assessment based on WOE model along Jiacha—Langxian County section of Sichuan—Tibet railway, China[J]. Mountain Research,2019,37(2):240 − 251. (in Chinese with English abstract)

    [6]

    兰恒星, 伍法权, 王思敬. 基于GIS的滑坡CF多元回归模型及其应用[J]. 山地学报,2002,20(6):732 − 737. [LAN Hengxing, WU Faquan, WANG Sijing. GIS based landslide CF multi-variable regression model and its application[J]. Journal of Mountain Research,2002,20(6):732 − 737. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-2786.2002.06.015

    [7]

    郭子正, 殷坤龙, 黄发明, 等. 基于滑坡分类和加权频率比模型的滑坡易发性评价[J]. 岩石力学与工程学报,2019,38(2):287 − 300. [GUO Zizheng, YIN Kunlong, HUANG Faming, et al. Evaluation of landslide susceptibility based on landslide classification and weighted frequency ratio model[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(2):287 − 300. (in Chinese with English abstract)

    [8]

    许冲, 戴福初, 姚鑫, 等. GIS支持下基于层次分析法的汶川地震区滑坡易发性评价[J]. 岩石力学与工程学报,2009,28(增刊 2):3978 − 3985. [XU Chong, DAI Fuchu, YAO Xin, et al. Gis-based landslide susceptibility assessment using analytical hierarchy process in Wenchuan earthquake region[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(Sup 2):3978 − 3985. (in Chinese with English abstract)

    [9]

    苏强. 基于DEM的黄土滑坡危险性评价研究[D]. 北京: 中国地质大学(北京), 2006.

    SU Qiang. Research on loess landslide hazard zonation based on DEM[D]. Beijing: China University of Geosciences, 2006. (in Chinese with English abstract)

    [10]

    李嘉良, 马东辉, 王威. 基于证据理论和熵权灰色关联的潜在地震滑坡危险性评价[J]. 中南大学学报(自然科学版),2016,47(5):1730 − 1736. [LI Jialiang, MA Donghui, WANG Wei. Assessment of potential seismic landslide hazard based on evidence theory and entropy weight grey incidence[J]. Journal of Central South University (Science and Technology),2016,47(5):1730 − 1736. (in Chinese with English abstract) doi: 10.11817/j.issn.1672-7207.2016.05.036

    [11]

    牛瑞卿, 彭令, 叶润青, 等. 基于粗糙集的支持向量机滑坡易发性评价[J]. 吉林大学学报(地球科学版),2012,42(2):430 − 439. [NIU Ruiqing, PENG Ling, YE Runqing, et al. Landslide susceptibility assessment based on rough sets and support vector machine[J]. Journal of Jilin University (Earth Science Edition),2012,42(2):430 − 439. (in Chinese with English abstract)

    [12]

    王森, 许强, 罗博宇, 等. 基于分形理论的南江县滑坡敏感性分析与易发性评价[J]. 水文地质工程地质,2017,44(3):119 − 126. [WANG Sen, XU Qiang, LUO Boyu, et al. Vulnerability analysis and susceptibility evaluation of landslides based on fractal theory in Nanjiang County[J]. Hydrogeology & Engineering Geology,2017,44(3):119 − 126. (in Chinese with English abstract)

    [13]

    何静. 基于机器学习的滑坡灾害空间预测及风险评估[D]. 成都: 电子科技大学, 2019.

    HE Jing. Spatial prediction and risk assessment of landslides based on machine learning[D]. Chengdu: University of Electronic Science and Technology of China, 2019. (in Chinese with English abstract)

    [14]

    黄发明, 殷坤龙, 蒋水华, 等. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报,2018,37(1):156 − 167. [HUANG Faming, YIN Kunlong, JIANG Shuihua, et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(1):156 − 167. (in Chinese with English abstract)

    [15]

    王敞, 陈增强, 袁著祉. 基于遗传算法的K均值聚类分析[J]. 计算机科学,2003,30(2):163 − 164. [WANG Chang, CHEN Zengqiang, YUAN Zhuzhi. K-means clustering based on genetic algorithm[J]. Computer Science,2003,30(2):163 − 164. (in Chinese with English abstract) doi: 10.3969/j.issn.1002-137X.2003.02.044

    [16]

    陈玉萍, 袁志强, 周博, 等. 遗传算法优化BP网络在滑坡灾害预测中的应用研究[J]. 水文地质工程地质,2012,39(1):114 − 119. [CHEN Yuping, YUAN Zhiqiang, ZHOU Bo, et al. Application of back propagation neural networks with optimization of genetic algorithms to landslide hazard prediction[J]. Hydrogeology & Engineering Geology,2012,39(1):114 − 119. (in Chinese with English abstract)

    [17]

    武雪玲, 沈少青, 牛瑞卿. GIS支持下应用PSO-SVM模型预测滑坡易发性[J]. 武汉大学学报(信息科学版),2016,41(5):665 − 671. [WU Xueling, SHEN Shaoqing, NIU Ruiqing. Landslide susceptibility prediction using GIS and PSO-SVM[J]. Geomatics and Information Science of Wuhan University,2016,41(5):665 − 671. (in Chinese with English abstract)

    [18]

    张俊, 殷坤龙, 王佳佳, 等. 三峡库区万州区滑坡灾害易发性评价研究[J]. 岩石力学与工程学报,2016,35(2):284 − 296. [ZHANG Jun, YIN Kunlong, WANG Jiajia, et al. Evaluation of landslide susceptibility for Wanzhou district of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(2):284 − 296. (in Chinese with English abstract)

  • 加载中

(6)

(6)

计量
  • 文章访问数:  2696
  • PDF下载数:  109
  • 施引文献:  0
出版历程
收稿日期:  2020-11-03
修回日期:  2021-05-18
刊出日期:  2021-12-25

目录