中国地质环境监测院
中国地质灾害防治工程行业协会
主办

SBAS-InSAR和PS-InSAR技术在鲁西南某线性工程沿线地面沉降成因分析中的应用

张凯翔, 张占荣, 于宪煜. SBAS-InSAR和PS-InSAR技术在鲁西南某线性工程沿线地面沉降成因分析中的应用[J]. 中国地质灾害与防治学报, 2022, 33(4): 65-76. doi: 10.16031/j.cnki.issn.1003-8035.202108016
引用本文: 张凯翔, 张占荣, 于宪煜. SBAS-InSAR和PS-InSAR技术在鲁西南某线性工程沿线地面沉降成因分析中的应用[J]. 中国地质灾害与防治学报, 2022, 33(4): 65-76. doi: 10.16031/j.cnki.issn.1003-8035.202108016
ZHANG Kaixiang, ZHANG Zhanrong, YU Xianyu. Application of SBAS-InSAR and PS-InSAR technologies in analysis of landslide subsidence along a linear infrastructure in Southwestern Shandong[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 65-76. doi: 10.16031/j.cnki.issn.1003-8035.202108016
Citation: ZHANG Kaixiang, ZHANG Zhanrong, YU Xianyu. Application of SBAS-InSAR and PS-InSAR technologies in analysis of landslide subsidence along a linear infrastructure in Southwestern Shandong[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 65-76. doi: 10.16031/j.cnki.issn.1003-8035.202108016

SBAS-InSAR和PS-InSAR技术在鲁西南某线性工程沿线地面沉降成因分析中的应用

  • 基金项目: 国家重点研发计划项目(2021YFB2600400);中国铁建股份有限公司科技重大专项(2022-A02);中铁第四勘察设计院集团有限公司科研项目(2020K038)
详细信息
    作者简介: 张凯翔(1989-),男,湖北武汉人,博士,高级工程师,主要从事遥感地质勘察、地理地质信息系统研发相关研究。E-mail:dr_setsuna@163.com
  • 中图分类号: P642.26

Application of SBAS-InSAR and PS-InSAR technologies in analysis of landslide subsidence along a linear infrastructure in Southwestern Shandong

  • 地面沉降问题严重影响着鲁西南经济发展区交通工程建设。文中选择某线性工程两侧5 km范围作为研究区,文章收集RadarSAT-2(2017—2020年)、Sentinel-1A(2019—2020年)存档数据和沿线区域地质、水文地质、矿产开发资料,采用时序InSAR分析的方法,对研究区沿线地面沉降分布特征及规律进行综合分析。研究结果表明:研究区主要地面沉降诱因是煤矿采空区塌陷和地下水超量开采,前者以矿区工作面为中心形成沉降漏斗,沉降速率变化和沉降中心移动与煤矿作业工作面挖掘进度和转移密切相关;后者沉降分布规律与地下水开采使用点相关,形成与地下水开采使用范围相近的沉降带。研究区在2017—2020年内持续发生沉降,最大年均沉降速率为136.5 mm/a,单年累计最大沉降量为220 mm。经同期CPI水准点观测结果校核,InSAR数据处理成果平均误差小于1 cm/a,相关系数到达70%以上。本文采用的分析方法能及时准确反映出线路方案穿行研究区内各处地面沉降变化,为线路方案规划和地质灾害整治提供有效合理参考。

  • 加载中
  • 图 1  研究区地貌单元划分图

    Figure 1. 

    图 2  研究区采空区分布图

    Figure 2. 

    图 3  SBAS-InSAR数据处理技术

    Figure 3. 

    图 4  PS-InSAR数据处理技术

    Figure 4. 

    图 5  RadarSAT-2数据基线图

    Figure 5. 

    图 6  研究区2017—2020年平均沉降速率分布图

    Figure 6. 

    图 7  区域沉降漏斗

    Figure 7. 

    图 8  研究区2017—2020年逐年累计形变量分布图

    Figure 8. 

    图 9  2017—2020年古城—星村—红楼煤矿重点沉降区域P1累计沉降量分布图

    Figure 9. 

    图 10  2017—2020年郭屯—赵楼煤矿重点沉降区域P2累计沉降量分布图

    Figure 10. 

    图 11  2017—2020年菏泽市城郊工业园重点沉降区P3累计沉降量分布图

    Figure 11. 

    图 12  线路方案InSAR地面形变曲线

    Figure 12. 

    图 13  线路方案附近CPI监测形变曲线

    Figure 13. 

    表 1  研究区星载SAR数据源基本参数

    Table 1.  Basic parameters of satellite SAR data sources in the study area

    参数SAR传感器
    RadarSAT-2Sentinel-1A
    幅宽/km125250
    雷达波长/cm5.65.6
    空间分辨率/m25×55×20
    重访周期/d2412
    影像数量2632
    时间覆盖范围2017-01-14—2020-07-272019-02-03—2020-07-15
    下载: 导出CSV

    表 2  菏泽地区第四系含水岩组水文地质特征[22]

    Table 2.  Hydrogeological characteristics of the Quaternary water-bearing rock group in Heze[22]

    岩组划分浅层潜水孔隙水中-深层承压孔隙水深层承压孔隙水
    埋深/m20~80200~300300~450
    岩性粉砂、粉细砂为主,多层分布,被黏土和淤泥质土隔开,砂层分布不均,累计厚度为10~30 m粉砂、粉细砂为主,因上部有黏土隔水层,该层水具有承压性。砂层连续性差,分布有4~6层,累计厚度为8~20 m粉细砂、细砂为主,砂层连续性差,
    累计厚度为20~50 m
    水文地质特征接受大气降水、地表水及农业灌溉回渗补给、富水性较强,单井涌水量为500~3000 m3/d,该层地下水位菏泽市农业灌溉主要用水接受上层潜水的越流补给及侧向径流补给,富水性相对较弱,单井涌水量为500 m3/d,该层地下水主要为矿化度大
    于2 g/L的咸水,基本没有开发利用
    补给单一,接受侧向径流补给,水流滞缓,
    补给量较小。单井涌水量小于500~
    1000 m3/d,为菏泽地区城区工业及
    生活主要用水
    下载: 导出CSV

    表 3  CPI测量值与InSAR数据采样值精度评估

    Table 3.  Accuracy evaluation of CPI measurement value and InSAR data sampling value

    2018年12月较2016年6月2020年6月较2016年6月
    中误差23.45 mm/a23.682 mm/a
    平均误差7.23 mm/a6.98 mm/a
    相关系数0.720.75
    下载: 导出CSV
  • [1]

    向铮. 山东煤城转型能力及提升分析研究[J]. 山东师范大学学报(自然科学版),2019,34(4):468 − 477. [XIANG Zheng. Analysis of transformative ability of Shandong coal-based cities and improvement[J]. Journal of Shandong Normal University (Natural Science),2019,34(4):468 − 477. (in Chinese with English abstract)

    [2]

    黄庆享, 杜君武, 侯恩科, 等. 浅埋煤层群覆岩与地表裂隙发育规律和形成机理研究[J]. 采矿与安全工程学报,2019,36(1):7 − 15. [HUANG Qingxiang, DU Junwu, HOU Enke, et al. Research on overburden and ground surface cracks distribution and formation mechanism in shallow coal seams group mining[J]. Journal of Mining & Safety Engineering,2019,36(1):7 − 15. (in Chinese with English abstract)

    [3]

    姚佳明, 姚鑫, 陈剑, 等. 基于InSAR技术的缓倾煤层开采诱发顺层岩体地表变形模式研究[J]. 水文地质工程地质,2020,47(3):135 − 146. [YAO Jiaming, YAO Xin, CHEN Jian, et al. A study of deformation mode and formation mechanism of a bedding landslide induced by mining of gently inclined coal seam based on InSAR technology[J]. Hydrogeology & Engineering Geology,2020,47(3):135 − 146. (in Chinese with English abstract)

    [4]

    周定义, 左小清, 喜文飞, 等. 基于SBAS-InSAR技术的深切割高山峡谷区滑坡灾害早期识别[J]. 中国地质灾害与防治学报,2022,33(2):16 − 24. [ZHOU Dingyi, ZUO Xiaoqing, XI Wenfei, et al. Early identification of landslide hazards in deep cut alpine canyon using SBAS-InSAR technology[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):16 − 24. (in Chinese with English abstract)

    [5]

    王之栋, 文学虎, 唐伟, 等. 联合多种InSAR技术的龙门山-大渡河区域地灾隐患早期探测[J]. 武汉大学学报·信息科学版,2020,45(3):451 − 459. [WANG Zhidong, WEN Xuehu, TANG Wei, et al. Early detection of geological hazards in Longmenshan-Dadu River area using various InSAR techniques[J]. Geomatics and Information Science of Wuhan University,2020,45(3):451 − 459. (in Chinese with English abstract)

    [6]

    张佳佳, 高波, 刘建康, 等. 基于SBAS-InSAR技术的川藏铁路澜沧江段滑坡隐患早期识别[J]. 现代地质,2021,35(1):64 − 73. [ZHANG Jiajia, GAO Bo, LIU Jiankang, et al. Early landslide detection in the Lancangjiang region along the Sichuan-Tibet railway based on SBAS-InSAR technology[J]. Geoscience,2021,35(1):64 − 73. (in Chinese with English abstract)

    [7]

    李海君, 张耀文, 谷洪彪, 等. 基于PS-InSAR技术的廊坊北部地区地面沉降监测研究[J]. 大地测量与地球动力学,2018,38(11):1122 − 1127. [LI Haijun, ZHANG Yaowen, GU Hongbiao, et al. Land subsidence detection based on PS-InSAR technology in northern area of Langfang City[J]. Journal of Geodesy and Geodynamics,2018,38(11):1122 − 1127. (in Chinese with English abstract)

    [8]

    雷坤超, 陈蓓蓓, 宫辉力, 等. 基于PS-InSAR技术的天津地面沉降研究[J]. 水文地质工程地质,2013,40(6):106 − 111. [LEI Kunchao, CHEN Beibei, GONG Huili, et al. Detection of land subsidence in Tianjin based on PS-InSAR technology[J]. Hydrogeology & Engineering Geology,2013,40(6):106 − 111. (in Chinese with English abstract)

    [9]

    徐小波, 马超, 屈春燕, 等. 豫北安阳市区及水冶镇城市地面沉降的时间序列分析[J]. 河南理工大学学报(自然科学版),2021,40(1):74 − 82. [XU Xiaobo, MA Chao, QU Chunyan, et al. Time series analysis of urban ground subsidence in Anyang City and Shuiye town, northern Henan Province[J]. Journal of Henan Polytechnic University (Natural Science),2021,40(1):74 − 82. (in Chinese with English abstract)

    [10]

    张红峰, 刘瀛. 基于改进PSInSAR技术的非城区地表形变监测[J]. 大地测量与地球动力学,2021,41(6):568 − 571. [ZHANG Hongfeng, LIU Ying. Non-urban surface deformation monitoring based on improved PSInSAR[J]. Journal of Geodesy and Geodynamics,2021,41(6):568 − 571. (in Chinese with English abstract)

    [11]

    冉培廉, 李少达, 杨晓霞, 等. 基于SBAS-InSAR技术的西安市地面沉降监测[J]. 河南理工大学学报(自然科学版),2021,40(3):66 − 74. [RAN Peilian, LI Shaoda, YANG Xiaoxia, et al. Monitoring of Xi’an City land subsidence based on SBAS-InSAR[J]. Journal of Henan Polytechnic University (Natural Science),2021,40(3):66 − 74. (in Chinese with English abstract)

    [12]

    高二涛, 范冬林, 付波霖, 等. 基于PS-InSAR和SBAS技术监测南京市地面沉降[J]. 大地测量与地球动力学,2019,39(2):158 − 163. [GAO Ertao, FAN Donglin, FU Bolin, et al. Land subsidence monitoring of Nanjing area based on PS-InSAR and SBAS technology[J]. Journal of Geodesy and Geodynamics,2019,39(2):158 − 163. (in Chinese with English abstract)

    [13]

    潘超, 江利明, 孙奇石, 等. 基于Sentinel-1雷达影像的成都市地面沉降InSAR监测分析[J]. 大地测量与地球动力学,2020,40(2):198 − 203. [PAN Chao, JIANG Liming, SUN Qishi, et al. Monitoring and analyzing Chengdu ground subsidence based on InSAR technology by using sentinel-1 radar image[J]. Journal of Geodesy and Geodynamics,2020,40(2):198 − 203. (in Chinese with English abstract)

    [14]

    陈国浒, 刘云华, 单新建. PS-InSAR技术在北京采空塌陷区地表形变测量中的应用探析[J]. 中国地质灾害与防治学报,2010,21(2):59 − 63. [CHEN Guohu, LIU Yunhua, SHAN Xinjian. Application of PS-InSAR technique in the deformation monitoring in mining collapse areas in Beijing[J]. The Chinese Journal of Geological Hazard and Control,2010,21(2):59 − 63. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-8035.2010.02.012

    [15]

    卢欣奇, 李学峰, 张勤斌, 等. 基于PS-InSAR技术的老采空区地表沉陷监测与分析[J]. 中国矿业,2019,28(4):104 − 110. [LU Xinqi, LI Xuefeng, ZHANG Qinbin, et al. Surface subsidence monitoring of old goaf based on the PS-InSAR technology[J]. China Mining Magazine,2019,28(4):104 − 110. (in Chinese with English abstract)

    [16]

    潘光永, 陶秋香, 陈洋, 等. 基于SBAS-InSAR的山东济阳矿区沉降监测与分析[J]. 中国地质灾害与防治学报,2020,31(4):100 − 106. [PAN Guangyong, TAO Qiuxiang, CHEN Yang, et al. Monitoring and analysis of sedimentation in Jiyang mining area of Shandong Province based on SBAS-InSAR[J]. The Chinese Journal of Geological Hazard and Control,2020,31(4):100 − 106. (in Chinese with English abstract)

    [17]

    李达, 邓喀中, 高晓雄, 等. 基于SBAS-InSAR的矿区地表沉降监测与分析[J]. 武汉大学学报·信息科学版,2018,43(10):1531 − 1537. [LI Da, DENG Kazhong, GAO Xiaoxiong, et al. Monitoring and analysis of surface subsidence in mining area based on SBAS-InSAR[J]. Geomatics and Information Science of Wuhan University,2018,43(10):1531 − 1537. (in Chinese with English abstract)

    [18]

    李玉飞, 叶义成, 胡南燕, 等. 机械施工动荷载-采空区顶板失稳判据[J]. 中国地质灾害与防治学报,2019,30(3):87 − 93. [LI Yufei, YE Yicheng, HU Nanyan, et al. Instability criterion of the goaf roof under dynamic loading of construction[J]. The Chinese Journal of Geological Hazard and Control,2019,30(3):87 − 93. (in Chinese with English abstract)

    [19]

    谢猛. 综合勘察方法在蒙华铁路石膏矿采空区选线勘察中的应用[J]. 中国地质灾害与防治学报,2021,32(1):58 − 64. [XIE Meng. Application of comprehensive survey methods in the gypsum mine goaf for Mengxi-Huazhong railway route selection[J]. The Chinese Journal of Geological Hazard and Control,2021,32(1):58 − 64. (in Chinese with English abstract)

    [20]

    杨逾, 于洁瑜, 王宇. 条带开采采空区覆岩移动规律数值模拟分析[J]. 中国地质灾害与防治学报,2017,28(1):96 − 101. [YANG Yu, YU Jieyu, WANG Yu. Numerical simulation study on movement law of overlying strata of goaf in strip mining[J]. The Chinese Journal of Geological Hazard and Control,2017,28(1):96 − 101. (in Chinese with English abstract)

    [21]

    高江平, 胡海波, 孙世界, 等. 太沙基地基极限承载力的三剪应力统一强度理论解[J]. 西安建筑科技大学学报(自然科学版),2019,51(2):186 − 191. [GAO Jiangping, HU Haibo, SUN Shijie, et al. Three-shear stress unified strength theoretical solution of Terzaghi ultimate bearing capacity of foundation[J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition),2019,51(2):186 − 191. (in Chinese with English abstract)

    [22]

    岳建刚. 鲁南高铁沿线地面沉降现状及原因分析[J]. 铁道勘察,2020,46(2):60 − 65. [YUE Jiangang. Analysis on the current situation and causes of land subsidence along the lunan high speed railway[J]. Railway Investigation and Surveying,2020,46(2):60 − 65. (in Chinese with English abstract)

  • 加载中

(13)

(3)

计量
  • 文章访问数:  1279
  • PDF下载数:  63
  • 施引文献:  0
出版历程
收稿日期:  2021-08-19
修回日期:  2021-10-26
录用日期:  2021-11-17
刊出日期:  2022-08-25

目录