Monitoring and warning system for ground subsidence of gypsum mine based on fiber sensing
-
摘要:
近年来,江苏省邳州市北部石膏矿区发生了20多起采空塌陷灾害。由于传统的采空区地表土体变形监测方法均难以满足采空区地面塌陷监测超前预报的要求,为解决石膏矿区采空塌陷监测预警机制缺乏的问题,邳北石膏矿区开展了基于光纤传感技术的监测预警工作。根据前期调查分析和数值模拟等成果推导石膏矿地面塌陷机理,并采用光纤传感器对采空区上覆松散层底部含水层地下水位动态监测、深部岩土体位移监测及微震监测。在监测过程中,当水位变动幅度、岩土体位移突然超出正常波动值时或接收到较强震动信号时触发报警,在地面塌陷发生前期进行有效的预警,为防灾减灾工作提供充足的准备时间。通过监测预警工作的实施,验证了这些监测预警手段的有效性,可以为矿区地面塌陷地质灾害的监测、预报以及防治提供数据基础与科学依据,也可为石膏矿和其它类似条件的地面塌陷地质灾害防治和监测预警工作提供参考。
Abstract:In recent years, the mined-out area resulting in more than 20 goaf collapse disasters in the north Pizhou, Jiangsu Province. The traditional monitoring method of surface soil deformation is difficult to meet the requirement of advance prediction of surface subsidence. In order to solve the lack of monitoring and early warning mechanism of mined-out subsidence in gypsum mining area, a monitoring and early warning system based on fiber sensing technology was developed in this area. According to the results of preliminary investigation, analysis and numerical simulation, the ground collapse mechanism of gypsum mine is deduced, dynamic monitoring of groundwater level, displacement of deep rock and soil mass and microseismic monitoring of bottom aquifer above loose layer were monitored by optical fiber sensor, in the course of monitoring, the alarm will be triggered when the fluctuation of water level and the displacement of rock and soil suddenly exceed the normal fluctuation value or when a strong vibration signal is received, and the effective early warning will be carried out in the early stage of the ground collapse, and can provide adequate lead time for disaster prevention and mitigation efforts. Through the implementation of monitoring and early-warning work, the validity of these monitoring and early-warning means has been verified, which can provide data basis and scientific basis for the monitoring, prediction and prevention of ground subsidence in mining areas, it can also provide reference for prevention, control, monitoring and early warning of ground collapse geological disaster in gypsum mine and other similar conditions.
-
Key words:
- fiber sensing /
- gypsum mine /
- ground subsidence /
- monitoring and early warning.
-
表 1 矿区岩土层的物理性质指标
Table 1. Physical properties indexes of rock and soil
时代 岩性 密度/(g·cm−3) 孔隙比 内摩擦角/(°) 抗压强度/MPa 抗拉强度/MPa Q 粉质黏土 2.09~2.12 0.46~0.55 28 − − 含钙质结核黏土 2.01~2.02 0.67~0.68 17~29 − − 中砂 1.94 0.58 40 − − 粗砂 2.13 0.37 44 − − E 泥岩、含膏泥岩 2.38~2.42 − 34~36 4.4~13.0 0.44~0.64 含砾砂岩 2.46~2.70 − 37~44 3.26~10.6 0.30~0.87 膏岩 2.26~2.48 − 38~39 19.76~36.87 0.44~1.76 表 2 主要监测工程量统计表
Table 2. Statistical table of main monitored quantities
期次
(年月)序号 孔位编号 孔深/m 备注 第一期
(2018年12月)1 DXSW01 44 底含水水位
监测孔2 DXSW02 46 3 DXSW03 45 4 DXSW04 45 5 DXSW05 45 6 DXSW06 45 第二期
(2019年10月)7 GXJC01 50 变形、渗压、温度、微震
监测孔8 GXJC02 50 9 GXJC03 50 -
[1] 邹洋,李夕兵,赵国彦,等. 石膏矿采空区上覆岩层冒落规律与危险性评价[J]. 中国安全科学学报,2011,21(2):101 − 108. [ZOU Yang,LI Xibing,ZHAO Guoyan,et al. Study on the caving laws of overlying strata in gypsum mine goaf and its risk assessment[J]. China Safety Science Journal,2011,21(2):101 − 108. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-3033.2011.02.018
[2] 章求才,贺桂成,黄炳香,等. 浅埋石膏矿顶板破断机理及应用研究[J]. 采矿与安全工程学报,2018,35(4):773 − 779. [ZHANG Qiucai,HE Guicheng,HUANG Bingxiang,et al. Investigation on the fracture mechanism of the immediate roof in shallow buried gypsum mine and its application[J]. Journal of Mining & Safety Engineering,2018,35(4):773 − 779. (in Chinese with English abstract)
[3] 李明,郑怀昌,刘志河,等. 石膏长期强度对采空区稳定性的影响分析[J]. 化工矿物与加工,2010,39(2):21 − 23. [LI Ming,ZHENG Huaichang,LIU Zhihe,et al. Effect analysis of the long-term strength of gypsum on mine goaf stability[J]. Industrial Minerals & Processing,2010,39(2):21 − 23. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-7524.2010.02.007
[4] 夏开宗,陈从新,刘秀敏,等. 石膏矿矿柱-护顶层支撑体系的流变力学模型分析[J]. 岩土力学,2017,38(10):2923 − 2930. [XIA Kaizong,CHEN Congxin,LIU Xiumin,et al. Rheological mechanical model of pillar-protective roof supporting system in gypsum mines[J]. Rock and Soil Mechanics,2017,38(10):2923 − 2930. (in Chinese with English abstract)
[5] 陈从新. 石膏矿采空区稳定性的数值模拟研究报告[R]. 武汉: 中国科学院武汉岩土力学研究所, 2015
CHEN Congxin. Study report on numerical simulation of the stability of gypsummine goaf[R]. Wuhan: Chinese Academy of Sciences, 2015. (in Chinese)
[6] 闫士民,李乐功,刘保业. 江苏邳州石膏矿区采矿地面塌陷易发性模糊综合评判[J]. 地质学刊,2014,38(2):334 − 338. [YAN Shimin,LI Legong,LIU Baoye. Fuzzy comprehensive evaluation on susceptibility of mining surface collapse in Pizhou gypsum mine in Jiangsu[J]. Journal of Geology,2014,38(2):334 − 338. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-3636.2014.02.334
[7] 刘爱斌,景佳俊,周丹,等. 石膏矿区采空地面塌陷易发性分区与监测预警研究[J]. 中国地质调查,2017,4(6):76 − 82. [LIU Aibin,JING Jiajun,ZHOU Dan,et al. Research on susceptibility zones and monitoring and early warning of ground collapse in gypsum mining area[J]. Geological Survey of China,2017,4(6):76 − 82. (in Chinese with English abstract)
[8] 周丹,景佳俊,邢雪. 江苏省邳州石膏矿区采空地面塌陷发育特征与防治对策研究[J]. 中国地质调查,2018,5(4):99 − 106. [ZHOU Dan,JING Jiajun,XING Xue. Study on the development characteristics and control countermeasure of ground collapse in gypsum mining area of Pizhou,Jiangsu Province[J]. Geological Survey of China,2018,5(4):99 − 106. (in Chinese with English abstract) doi: 10.19388/j.zgdzdc.2018.04.12
[9] 卢毅,施斌,于军,等. 地面变形分布式光纤监测模型试验研究[J]. 工程地质学报,2015,23(5):896 − 901. [LU Yi,SHI Bin,YU Jun,et al. Model test on distributed optical fiber monitoring of land subsidence and ground fissures[J]. Journal of Engineering Geology,2015,23(5):896 − 901. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2015.05.010
[10] 郑茂兴,于广. 监测监控技术在石膏矿采空区的应用[J]. 化工矿物与加工,2012,41(9):44 − 46. [ZHENG Maoxing,YU Guang. Application of monitoring technique in mined-out area of gypsum mine[J]. Industrial Minerals & Processing,2012,41(9):44 − 46. (in Chinese with English abstract) doi: 10.16283/j.cnki.hgkwyjg.2012.09.008
[11] 汤志刚,景佳俊,颜士顺,等. 基于InSAR监测数据的石膏矿采空塌陷特征分析—以邳州平台矿和希州矿为例[J]. 中国地质调查,2020,7(4):112 − 117. [TANG Zhigang,JING Jiajun,YAN Shishun,et al. Analysis of gob collapse characteristics in gypsum mine based on InSAR monitoring data:A case study of Pizhou Pingtai and Xizhou mine[J]. Geological Survey of China,2020,7(4):112 − 117. (in Chinese with English abstract) doi: 10.19388/j.zgdzdc.2020.04.14
[12] 顾春生,袁骏. 基于光纤光栅传感技术的覆岩破坏模型试验[J]. 煤炭技术,2016,35(3):84 − 86. [GU Chunsheng,YUAN Jun. Model test of overlying rock failure based on fiber Bragg grating sensing technology[J]. Coal Technology,2016,35(3):84 − 86. (in Chinese with English abstract)
[13] 顾春生,杨伟峰. 基于光纤传感技术的降雨边坡模型试验[J]. 金属矿山,2017(2):141 − 144. [GU Chunsheng,YANG Weifeng. Model test of landslide failure under rainfall based on optical sensing technology[J]. Metal Mine,2017(2):141 − 144. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-1250.2017.02.026
[14] 卢毅,施斌,席均,等. 基于BOTDR的地裂缝分布式光纤监测技术研究[J]. 工程地质学报,2014,22(1):8 − 13. [LU Yi,SHI Bin,XI Jun,et al. Field study of botdr-based distributed monitoring technology for ground fissures[J]. Journal of Engineering Geology,2014,22(1):8 − 13. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2014.01.002
[15] 刘苏平,施斌,张诚成,等. 连云港徐圩地面沉降BOTDR监测与评价[J]. 水文地质工程地质,2018,45(5):158 − 164. [LIU Suping,SHI Bin,ZHANG Chengcheng,et al. Monitoring and evaluation of land subsidence based on BOTDR in Xuwei near Lianyungang[J]. Hydrogeology & Engineering Geology,2018,45(5):158 − 164. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2018.05.22
[16] 吴静红,姜洪涛,苏晶文,等. 基于DFOS的苏州第四纪沉积层变形及地面沉降监测分析[J]. 工程地质学报,2016,24(1):56 − 63. [WU Jinghong,JIANG Hongtao,SU Jingwen,et al. Dfos-based monitoring on quaternary sediments deformation and land subsidence in Suzhou,China[J]. Journal of Engineering Geology,2016,24(1):56 − 63. (in Chinese with English abstract)
[17] 施斌,徐洪钟,张丹,等. BOTDR应变监测技术应用在大型基础工程健康诊断中的可行性研究[J]. 岩石力学与工程学报,2004,23(3):493 − 499. [SHI Bin,XU Hongzhong,ZHANG Dan,et al. Feasibility study on application of botdr to health monitoring for large infrastructure engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(3):493 − 499. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2004.03.025
[18] 施斌. 论大地感知系统与大地感知工程[J]. 工程地质学报,2017,25(3):582 − 591. [SHI Bin. On the ground sensing system and ground sensing engineering[J]. Journal of Engineering Geology,2017,25(3):582 − 591. (in Chinese with English abstract)
[19] 徐洪钟,周元,张丹. 基于GIS的岩溶塌陷分布式光纤监测系统的研发[J]. 水文地质工程地质,2011,38(3):120 − 123. [XU Hongzhong,ZHOU Yuan,ZHANG Dan. Development of Karst collapse monitoring system using distributed optical fiber sensor based on GIS[J]. Hydrogeology & Engineering Geology,2011,38(3):120 − 123. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2011.03.022
[20] 冯亚伟, 毛宁利, 李卫利. 山东荆泉地区岩溶地面塌陷预警分区研究[J/OL]. 中国岩溶, 2022: 1 − 16. (2022-07-27). https://kns.cnki.net/kcms/detail/45.1157.P.20220727.0841.002.html.
FENG Yawei, MAO Ningli, LI Weili. Study on early warning zoning of Karst collapse in Jingquan area of Shandong Province[J/OL]. Carsologica Sinica, 2022: 1 − 16. (2022-07-27). https://kns.cnki.net/kcms/detail/45.1157.P.20220727.0841.002.html. (in Chinese with English abstract)
[21] 周正, 李大华, 廖云平, 等. 重庆中梁山岩溶地面塌陷特征及形成机理[J]. 中国岩溶,2022,41(1):67 − 78. [ZHOU Zheng, LI Dahua, LIAO Yunping, et al. Characteristics and formation mechanism of Karst ground collapse in Zhongliangshan area, Chongqing[J]. Carsologica Sinica,2022,41(1):67 − 78. (in Chinese with English abstract)
[22] 何国清, 杨伦, 凌赓娣, 等. 矿山开采沉陷学[M]. 徐州: 中国矿业大学出版社, 1991
HE Guoqing, YANG Lun, LING Gengdi, et al. Mining subsidence theory[M]. Xuzhou: China University of Mining & Technology Publisher, 1991. (in chinese)
[23] 王波,蔡承刚,汤志刚,等. 石膏矿采空区地面塌陷特征的离散元模拟[J]. 矿业研究与开发,2021,41(7):71 − 78. [WANG Bo,CAI Chenggang,TANG Zhigang,et al. Discrete element simulation of ground collapse characteristics in goaf of gypsum mine[J]. Mining Research and Development,2021,41(7):71 − 78. (in Chinese with English abstract)