中国地质环境监测院
中国地质灾害防治工程行业协会
主办

D-InSAR与随机森林模型耦合的活动性滑坡识别方法探究

高星月, 王世杰, 高鹏程. D-InSAR与随机森林模型耦合的活动性滑坡识别方法探究[J]. 中国地质灾害与防治学报, 2022, 33(5): 102-108. doi: 10.16031/j.cnki.issn.1003-8035.202203029
引用本文: 高星月, 王世杰, 高鹏程. D-InSAR与随机森林模型耦合的活动性滑坡识别方法探究[J]. 中国地质灾害与防治学报, 2022, 33(5): 102-108. doi: 10.16031/j.cnki.issn.1003-8035.202203029
GAO Xingyue, WANG Shijie, GAO Pengcheng. Active landslide identification with a combined method of D-InSAR and random forest model[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 102-108. doi: 10.16031/j.cnki.issn.1003-8035.202203029
Citation: GAO Xingyue, WANG Shijie, GAO Pengcheng. Active landslide identification with a combined method of D-InSAR and random forest model[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 102-108. doi: 10.16031/j.cnki.issn.1003-8035.202203029

D-InSAR与随机森林模型耦合的活动性滑坡识别方法探究

  • 基金项目: 国家自然科学基金项目(41861061);兰州交通大学天佑创新团队(TY202001)
详细信息
    作者简介: 高星月(1998-),女,河南郑州人,测绘科学与技术专业,硕士研究生,主要从事InSAR与机器学习方法结合进行滑坡早期识别方面的研究。E-mail:2890756001@qq.com
    通讯作者: 王世杰(1971-),男,甘肃民勤人,正高级工程师,主要从事灾害监测及自然资源变化监测方面的研究。E-mail:wangshijie@mail.lzjtu.cn
  • 中图分类号: P642.22

Active landslide identification with a combined method of D-InSAR and random forest model

More Information
  • 灾害的早期识别是防灾减灾领域的关键技术。文中以甘肃省舟曲县为例,利用2018年1月-2019年1月Sentinel-1A雷达卫星降轨数据和2021年5月Sentinel-2光学遥感影像数据,通过D-InSAR技术获取研究区地表形变信息,利用随机森林模型识别潜在的滑坡体。结果表明:使用已有的滑坡数据集,采用随机森林模型能够较好地识别出潜在滑坡体。潜在滑坡点分布位置均位于地表形变量大的区域。舟曲县整体形变沿东西向发生,主要分布于舟曲县东北和西南方向,与潜在滑坡点高度重合。识别出的潜在滑坡点(立节乡北山滑坡),年形变量达到0.12 m,于2021年1月18日发生滑坡,该滑坡典型案例也印证了文中方法的有效性。

  • 加载中
  • 图 1  研究区行政区划及地形图

    Figure 1. 

    图 2  滑坡识别技术路线图

    Figure 2. 

    图 3  舟曲地表形变信息图

    Figure 3. 

    图 4  舟曲县随机森林模型滑坡识别区域和ROC曲线

    Figure 4. 

    图 5  舟曲地表形变与滑坡识别点叠合图

    Figure 5. 

    图 6  立节乡地表形变信息图

    Figure 6. 

    图 7  立节乡局部滑坡区域遥感影像图和地表形变信息对比图

    Figure 7. 

    表 1  卫星数据参数

    Table 1.  Satellite data parameters

    卫星数据源轨道方向波段中心入射角/(°)分辨率/m日期
    Sentinel-1A降轨C29~365×202018-01-21
    Sentinel-1A降轨C29~365×202019-01-04
    Sentinel-2红、绿、蓝102021-05-09
    下载: 导出CSV

    表 2  滑坡数据集[16]

    Table 2.  Landslide data set[16]

    文件类型滑坡数据/张非滑坡数据/张
    滑坡图像(*.png)7702 003
    滑坡形状文件(掩膜文件*.png)770
    DEM数据(*.png)7702 003
    边界坐标(多边形*.txt)770
    下载: 导出CSV
  • [1]

    李为乐,许强,陆会燕,等. 大型岩质滑坡形变历史回溯及其启示[J]. 武汉大学学报(信息科学版),2019,44(7):1043 − 1053. [LI Weile,XU Qiang,LU Huiyan,et al. Tracking the deformation history of large-scale rocky landslides and its enlightenment[J]. Geomatics and Information Science of Wuhan University,2019,44(7):1043 − 1053. (in Chinese with English abstract)

    [2]

    代聪,李为乐,陆会燕,等. 甘肃省舟曲县城周边活动滑坡InSAR探测[J]. 武汉大学学报(信息科学版),2021,46(7):994 − 1002. [DAI Cong,LI Weile,LU Huiyan,et al. Active landslides detection in Zhouqu County,Gansu Province using InSAR technology[J]. Geomatics and Information Science of Wuhan University,2021,46(7):994 − 1002. (in Chinese with English abstract)

    [3]

    林荣福,刘纪平,徐胜华,等. 随机森林赋权信息量的滑坡易发性评价方法[J]. 测绘科学,2020,45(12):131 − 138. [LIN Rongfu,LIU Jiping,XU Shenghua,et al. Evaluation method of landslide susceptibility based on random forest weighted information[J]. Science of Surveying and Mapping,2020,45(12):131 − 138. (in Chinese with English abstract)

    [4]

    赵延岭. 基于InSAR技术的树坪滑坡识别与研究[D]. 西安: 长安大学, 2017

    ZHAO Yanling. Identification and research of Shuping landslide based on InSAR technology[D]. Xi’an: Chang’an University, 2017. (in Chinese with English abstract)

    [5]

    赵超英,刘晓杰,张勤,等. 甘肃黑方台黄土滑坡 InSAR 识别、监测与失稳模式研究[J]. 武汉大学学报(信息科学版),2019,44(7):996 − 1007. [ZHAO Chaoying,LIU Xiaojie,ZHANG Qin,et al. Research on loess landslide identification,monitoring and failure mode with InSAR technique in Heifangtai,Gansu[J]. Geomatics and Information Science of Wuhan University,2019,44(7):996 − 1007. (in Chinese with English abstract)

    [6]

    DONG J,LIAO M S,XU Q,et al. Detection and displacement characterization of landslides using multi-temporal satellite SAR interferometry:A case study of Danba County in the Dadu River Basin[J]. Engineering Geology,2018,240:95 − 109.

    [7]

    张拴宏,纪占胜. 合成孔径雷达干涉测量(InSAR)在地面形变监测中的应用[J]. 中国地质灾害与防治学报,2004,15(1):112 − 117. [ZHANG Shuanhong,JI Zhansheng. A review on the application of interferometric synthetic aperture radar on surface deformation monitoring[J]. The Chinese Journal of Geological Hazard and Control,2004,15(1):112 − 117. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-8035.2004.01.024

    [8]

    SHIRVANI Z,ABDI O,BUCHROITHNER M. A synergetic analysis of Sentinel-1 and -2 for mapping historical landslides using object-oriented random forest in the Hyrcanian forests[J]. Remote Sens,2019,11(19):2300. doi: 10.3390/rs11192300

    [9]

    PIRALILOU S T,SHAHABI H,JARIHANI B,et al. Landslide detection using multi-scale image segmentation and different machine learning models in the Higher Himalayas[J]. Remote Sensing,2019,11(21):2575. doi: 10.3390/rs11212575

    [10]

    涂宽,王文龙,谌华,等. 联合升降轨InSAR与高分辨率光学遥感的滑坡隐患早期识别—以宁夏隆德为例[J]. 中国地质灾害与防治学报,2021,32(6):72 − 81. [TU Kuan,WANG Wenlong,CHEN Hua,et al. Early identification of hidden dangers of lanslides based on the combination of ascending and descending orbits InSAR and high spatial resolution optical remote sensing:A case study of landslides in Longde County,southern Ningxia[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):72 − 81. (in Chinese with English abstract)

    [11]

    王高峰,叶振南,李刚,等. 白龙江流域舟曲县城区地质灾害危险性评价[J]. 灾害学,2019,34(3):128 − 133. [WANG Gaofeng,YE Zhennan,LI Gang,et al. Geological hazard risk assessment of Zhouqu County in Bailong River basin[J]. Journal of Catastrophology,2019,34(3):128 − 133. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-811X.2019.03.024

    [12]

    SUN Q,ZHANG L,DING X L,et al. Slope deformation prior to Zhouqu,China landslide from InSAR time series analysis[J]. Remote Sensing of Environment,2015,156:45 − 57. doi: 10.1016/j.rse.2014.09.029

    [13]

    张之贤,张强,陶际春,等. 2010年“8·8”舟曲特大山洪泥石流灾害形成的气候特征及地质地理环境分析[J]. 冰川冻土,2012,34(4):898 − 905. [ZHANG Zhixian,ZHANG Qiang,TAO Jichun,et al. Climatic and geological environmental characteristics of the exceptional debris flow outburst in Zhouqu,Gansu Province,on 8 August,2010[J]. Journal of Glaciology and Geocryology,2012,34(4):898 − 905. (in Chinese with English abstract)

    [14]

    韩旭东,付杰,李严严,等. 舟曲江顶崖滑坡的早期判识及风险评估研究[J]. 水文地质工程地质,2021,48(6):180 − 186. [HAN Xudong,FU Jie,LI Yanyan,et al. A study of the early identification and risk assessment of the Jiangdingya landslide in Zhouqu County[J]. Hydrogeology & Engineering Geology,2021,48(6):180 − 186. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202104028

    [15]

    戴可人,卓冠晨,许强,等. 雷达干涉测量对甘肃南峪乡滑坡灾前二维形变追溯[J]. 武汉大学学报(信息科学版),2019,44(12):1778 − 1786. [DAI Keren,ZHUO Guanchen,XU Qiang,et al. Tracing the pre-failure two-dimensional surface displacements of Nanyu landslide,Gansu Province with radar interferometry[J]. Geomatics and Information Science of Wuhan University,2019,44(12):1778 − 1786. (in Chinese with English abstract)

    [16]

    JI S,YU D W,SHEN C Y,et al. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks[J]. Landslides,2020,17(6):1337 − 1352. doi: 10.1007/s10346-020-01353-2

    [17]

    郝国栋. 基于随机森林模型的商南县滑坡易发性评价[D]. 西安: 西安科技大学, 2019

    HAO Guodong. Landslide susceptibility assessment based on random forest model in Shangnan County[D]. Xi’an: Xi’an University of Science and Technology, 2019. (in Chinese with English abstract)

    [18]

    GHORBANZADEH O,BLASCHKE T,GHOLAMNIA K,et al. Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection[J]. Remote Sens,2019,11(2):196. doi: 10.3390/rs11020196

  • 加载中

(7)

(2)

计量
  • 文章访问数:  950
  • PDF下载数:  74
  • 施引文献:  0
出版历程
收稿日期:  2022-03-21
修回日期:  2022-05-30
录用日期:  2022-08-17
刊出日期:  2022-10-25

目录