Techniques of rotary hole-drilling for square anti-slide piles in complex formation and its application
-
摘要:
为提高方形抗滑桩开挖成孔效率,研究适用于复杂条件岩质滑坡抗滑桩快速成孔的工艺,以成都东部某大型岩质滑坡101根大截面抗滑桩为对象,通过现场调查、理论分析及工程试验等方法,研究了方形抗滑桩工程成孔工艺、施工特征和不同地层成孔工艺适用体系。研究表明,研制的“旋挖钻孔+人工辅助清边”成孔工艺作业效率大大提高,在该抗滑桩工程中实施达到日平均进尺2.0 m高效率,顺利达到工期要求,进而解决了岩石成孔效率慢、工艺落后的问题;根据滑坡所处条件选择合适的施工工艺对抢险救灾工程至关重要,对于交通条件好、工期要求高的大型滑坡治理工程,优先考虑“旋挖钻孔+人工辅助清边”工艺;对于交通条件差、作业受限的小型滑坡治理工程,采用风镐开挖土体、水磨钻开挖岩石成孔工艺。
Abstract:To improve the hole-forming efficiency of square anti-slide pile excavation and study the rapid hole-forming technology suitable for rock landslides under complex conditions, this paper aims to study the hole-forming technology, the construction characteristics and the applicable system of hole-forming technology in different strata of square anti-slide piles by means of field investigation, theoretical analysis and engineering test.In this paper, a large rock landslide treatment project in eastern Chengdu with 101 large-section anti-slide piles is takens as the research object. The research shows that the new hole-forming technology of “rotary hole-drilling + manual excavation of the remaining earthwork” has greatly improved work efficiency and achieved a high efficiency of 2.0 m daily average footage in the anti-slide pile project. In the project, the new technology has successfully met the requirements of the construction period and solved the problem of slow hole-forming efficiency and backward technology. It is very important for disaster relief projects to choose the appropriate construction technology according to the conditions of landslides. For large-scale landslide treatment projects with good traffic conditions and high construction period requirements, the technology of “rotary hole-drilling + manual excavation of the remaining earthwork” is preferred. For small landslide treatment projects with poor traffic conditions and limited operation methods, we can use pneumatic picks to excavate the soil and use watermill drills to excavate the rock.
-
-
表 1 旋挖钻开挖方形抗滑桩设计参数统计表
Table 1. Statistical table for design parameters of square anti-slide pile excavated by rotary drill
序号 桩径/m 护壁厚度/m 桩截面/m2 旋挖孔数/孔 旋挖截面/m2 旋挖面积占比/% 旋挖钻孔直径/m a 2.0×2.5 0.2 6.96 1 3.14 45.11 1个2.0 m钻孔 b 2.0×3.0 0.2 8.16 1 3.14 38.48 1个2.0 m钻孔 c 3.0×4.0 0.3 16.56 1 4.91 29.63 1个2.5 m钻孔 d 3.0×4.0 0.3 16.56 2 6.28 37.92 2个2.0 m钻孔 e 3.0×4.0 0.3 16.56 3 7.07 42.66 2个2.0 m、1个1.0 m钻孔 f 3.0×4.0 0.3 16.56 3 5.30 32.00 3个1.5 m钻孔 g 3.0×4.0 0.3 16.56 4 7.85 47.40 2个2.0 m、2个1.0 m钻孔 h 3.0×4.0 0.3 16.56 4 7.07 42.66 4个1.5 m钻孔 i 3.0×4.0 0.3 16.56 5 8.64 52.14 2个2.0 m、3个1.0 m钻孔 j 3.0×4.0 0.3 16.56 5 7.85 47.40 4个1.5 m、1个1.0 m钻孔 k 3.0×4.0 0.3 16.56 6 8.64 52.14 4个1.5 m、2个1.0 m钻孔 l 3.0×4.0 0.3 16.56 7 9.42 56.88 4个1.5 m、3个1.0 m钻孔 表 2 抗滑桩桩孔成孔施工工艺特征对比表
Table 2. The table of construction process characteristics of anti slide pile hole
施工工艺 典型桩
孔截面设备配置 劳动力/人 效率/(m·d−1) 费用/(元·m−3) 安全效益 吊装 凿岩 水磨钻 旋挖
操作工土层 软岩 孤石、
硬岩土方 岩石 传统人工
挖孔工艺2.0 m×3.0 m 铁锹、锄头、钢钎 1 2 — — 0.80 0.40 — 120~180 — 人员频繁上下井,受机械伤害、高空坠物、坠落的风险高 3.0 m×4.0 m 1 3 — — 0.60 0.30 — 风镐成孔
工艺2.0 m×3.0 m 4.5 m3空压机1台,
风镐2台1 2 — — 1.00 0.45 — 160~220 380~
450人员频繁上下井,受机械伤害、高空坠物、坠落的风险高 3.0 m×4.0 m 5. 0 m3空压机1台,
风镐3台1 3 — — 0.80 0.35 — 水磨钻
成孔工艺2.0 m×3.0 m 水磨钻机2台,4.5 m3空压机1台,风镐2台 1 2 2 — — — 0.90 — 420~
650人员频繁上下井,受机械伤害、高空坠物、触电、坠落的风险高 3.0 m×4.0 m 水磨钻机3台,4.5 m3空压机1台,风镐2台 1 2 3 — — — 0.60 旋挖钻孔+人工
辅助清边2.0 m×3.0 m 旋挖机1台,3.5 m3空压机1台,风镐1台 1 2 — 2 2.6 2.5 2.5 220~300 320~
465机械化程度高,人员不用频繁上下井,采取旋挖出渣,高空坠落、触电、机械伤害风险较低 3.0 m×4.0 m 旋挖机1台,5 m3空压机1台,风镐3台 1 3 — 2 2.2 2.0 2.0 注:以上费用测算基于地质灾害施工预算定额并结合项目现场实际测算;—表示未使用此种方法。 表 3 非爆破开挖成孔工艺技术适用体系统计表
Table 3. Statistical table of applicable system for non-blasting excavation technology
序号 成孔技术 优势 缺点 适用条件 1 传统人工挖孔工艺 操作简单,对工人技术要求不高,易上手 1.效率低,劳动强度大;
2.仅适用在土方开挖1.适用于土质滑坡卵石土、碎石土等土层开挖;
2.交通条件差,偏远山区2 风镐开挖 设备轻便,井下受限空间作业灵活,操作简单、技术性不强 1.效率低,人工劳动强度大;
2.人工下井作业频繁,安全隐患大;
3.风镐钻进岩石粉尘大,对工人职业健康不利1.适用于交通条件差,大型设备无法进场,周围条件受限、作业空间受限的情况,例如偏远山区小型滑坡、管道、铁路等线状工程滑坡;
2.适合小截面方桩的土层、碎石土、强风化基岩开挖3 水磨钻
开挖1.设备轻便,机动灵活,操作简单;
2.适用岩层范围广,不同岩石硬度均可适用1.设备小、动力差、效率低,劳动强度大;
2.人工下井作业频繁,安全隐患大1.适用于适用于交通条件差,大型设备无法进场,周围条件受限、作业空间受限的情况,例如偏远山区小型滑坡、管道、铁路等线状工程滑坡;
2.适合小截面方桩硬度高的岩石开挖4 旋挖钻孔+人工辅助清边 1.设备动力大、机械化程度高、工人劳动强度降低、效率高;
2.人员不用频繁上下井,不用吊桶出渣,安全隐患降低1.设备操作复杂,需要专业机械队伍作业;
2.地理位置、交通条件要求高,能满足旋挖机进场到达孔位;
3.作业扰动大,对滑坡稳定要求高,需要实时监测动态施工大型滑坡的大截面深桩成孔作业,地理位置交通条件好,对工期要求高的抢险救灾工程 -
[1] 裴振伟,年廷凯,吴昊,等. 滑坡地质灾害应急处置技术研究进展[J]. 防灾减灾工程学报,2021,41(6):1382 − 1394. [PEI Zhenwei,NIAN Tingkai,WU Hao,et al. Research progress on emergency treatment techniques for landslide geological hazards[J]. Journal of Disaster Prevention and Mitigation Engineering,2021,41(6):1382 − 1394. (in Chinese with English abstract)
[2] 朱庆,曾浩炜,丁雨淋,等. 重大滑坡隐患分析方法综述[J]. 测绘学报,2019,48(12):1551 − 1561. [ZHU Qing,ZENG Haowei,DING Yulin,et al. A review of major potential landslide hazards analysis[J]. Acta Geodaetica et Cartographica Sinica,2019,48(12):1551 − 1561. (in Chinese with English abstract)
[3] 姜清辉,郑俊,位伟,等. 重大滑坡灾害全过程调控减灾技术及试验验证与潜在应用[J]. 工程科学与技术,2020,52(5):62 − 70. [JIANG Qinghui,ZHENG Jun,WEI Wei,et al. Disaster prevention and mitigation technology for the whole process of serious landslides and its experimental verification and potential applications[J]. Advanced Engineering Sciences,2020,52(5):62 − 70. (in Chinese with English abstract)
[4] 陈其针,仲平,张贤,等. 构建中国自然灾害防灾减灾新体系[J]. 水文地质工程地质,2020,47(4):1 − 4. [CHEN Qizhen,ZHONG Ping,ZHANG Xian,et al. Establishment of an innovative system of natural disaster prevention and mitigation in China[J]. Hydrogeology & Engineering Geology,2020,47(4):1 − 4. (in Chinese with English abstract)
[5] 周定义,左小清,喜文飞,等. 基于SBAS-InSAR技术的深切割高山峡谷区滑坡灾害早期识别[J]. 中国地质灾害与防治学报,2022,33(2):16 − 24. [ZHOU Dingyi,ZUO Xiaoqing,XI Wenfei,et al. Early identification of landslide hazards in deep cut alpine canyon using SBAS-InSAR technology[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):16 − 24. (in Chinese with English abstract)
[6] 唐军峰,唐雪梅,周基,等. 滑坡堆积体变形失稳机制—以贵州剑河县东岭信滑坡为例[J]. 吉林大学学报(地球科学版),2022,52(2):503 − 516. [TANG Junfeng,TANG Xuemei,ZHOU Ji,et al. Deformation and instability mechanism of landslide accumulation:A case study of Donglingxin landslide accumulation in Jianhe County, Guizhou Province[J]. Journal of Jilin University (Earth Science Edition),2022,52(2):503 − 516. (in Chinese with English abstract)
[7] 魏少伟,隋颜阳,杨建民. 圆形与矩形截面抗滑桩抗滑性能的模型试验研究[J]. 岩土力学,2019,40(3):951 − 961. [WEI Shaowei,SUI Yanyang,YANG Jianmin. Model tests on anti-sliding mechanism of circular and rectangular cross section anti-sliding piles[J]. Rock and Soil Mechanics,2019,40(3):951 − 961. (in Chinese with English abstract)
[8] 刘宝生,宋京雷,郝社峰,等. 江苏宁镇地区典型下蜀土滑坡机理分析及应急处理措施[J]. 中国地质灾害与防治学报,2019,30(3):31 − 36. [LIU Baosheng,SONG Jinglei,HAO Shefeng,et al. Analysis and emergent control measures of the typical Xiashu loess landslides in Nanjing-Zhenjiang area,Jiangsu Province[J]. The Chinese Journal of Geological Hazard and Control,2019,30(3):31 − 36. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2019.03.06
[9] 邓时容,肖世国. 嵌固段顶部拓宽型抗滑桩计算方法[J]. 中国地质灾害与防治学报,2022,33(4):84 − 91. [DENG Shirong,XIAO Shiguo. Calculation method of stabilizing piles with broadened top at the built-in section[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):84 − 91. (in Chinese with English abstract)
[10] 王文沛, 殷跃平, 王立朝, 等. 排水抗滑桩技术研究现状及展望[J/OL]. 水文地质工程地质: 1 − 11[2022-12-19].
WANG Wenpei, YIN Yueping, WANG Lichao, et al. Status and prospects of studies on anti-slide shaft technology[J]. Hydrogeology & Engineering Geology:1-11[2022-12-19]. (in Chinese with English abstract)
[11] 刘松,翟军,陶力,等. 各向异性岩体非爆破开挖新工法在地下工程中的应用[J]. 公路,2019,64(7):343 − 347. [LIU Song,ZHAI Jun,TAO Li,et al. Application of new construction method of non-blasting excavation of anisotropic rock mass in underground engineering[J]. Highway,2019,64(7):343 − 347. (in Chinese)
[12] 张敏,周灵,谭超,等. 油气管道滑坡应急治理水磨钻开挖工艺与应用[J]. 油气储运,2021,40(7):816 − 821. [ZHANG Min,ZHOU Ling,TAN Chao,et al. Water mill drilling technology for landslide emergency treatment of oil and gas pipelines and its application[J]. Oil & Gas Storage and Transportation,2021,40(7):816 − 821. (in Chinese with English abstract)
[13] 蔡奉祥,马耀举. 浅析坚硬花岗岩地层桥梁桩基成孔工艺[J]. 公路,2021,66(9):210 − 213. [CAI Fengxiang,MA Yaoju. Analysis on the hole forming technology of bridge pile foundation in hard granite stratum[J]. Highway,2021,66(9):210 − 213. (in Chinese)
[14] 张家伟,赵湖潮,王锐麟,等. 矩形截面抗滑桩施工中方形钻头的应用[J]. 建筑施工,2019,41(12):2132 − 2133. [ZHANG Jiawei,ZHAO Huchao,WANG Ruilin,et al. Application of square drilling bit in construction of anti-slide pile with rectangular section[J]. Building Construction,2019,41(12):2132 − 2133. (in Chinese with English abstract)
[15] 赵建兵, 张德忠, 郑旭, 等. 矩形抗滑桩机械快速成孔施工方法: CN110593753A[P]. 20191220
ZHAO Jianbing, ZHANG Dezhong, ZHENG Xu, et al. Rectangular anti-sliding pile mechanical and fast hole forming construction method: CN110593753A[P]. 20191220. (in Chinese)
[16] 秦亮, 赵立新, 杨涛. 黄土地层矩形抗滑桩旋挖钻快速成桩技术及应用[J]. 隧道建设(中英文), 2019, 39(增刊2): 366 − 371
QIN Liang, ZHAO Lixin, YANG Tao. Rapid pile drilling technology by rotary drilling of rectangular anti-slide pile in loess stratum and its application[J]. Tunnel Construction, 2019, 39(Sup 2): 366 − 371. (in Chinese with English abstract)
[17] 张智斌. 矩形截面抗滑桩机械成孔施工技术[J]. 交通世界,2020(8):133 − 135. [ZHANG Zhibin. Construction technology of mechanical hole-forming for rectangular section anti-sliding piles[J]. TranspoWorld,2020(8):133 − 135. (in Chinese)
[18] 赖晓燕, 郑上满, 林志成, 等. 一种软质岩层矩形抗滑桩施工方法: CN111691408B[P]. 2021-08-03
LAI Xiaoyan, ZHENG Shangman, LIN Zhicheng, et al. Construction method of soft rock stratum rectangular slide-resistant pile: CN111691408B[P]. 2021-08-03. (in Chinese)
[19] 刘洋. 岩石特性对碎岩开挖方法的影响研究[D]. 石家庄: 石家庄铁道大学, 2020
LIU Yang. Study on the influence of rock characteristics on the method of rock fragment and excavaction[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2020. (in Chinese with English abstract)
[20] 梁森, 袁誉飞, 舒波, 等. 超大直径超深桩基施工技术[J]. 建筑结构, 2020, 50(增刊2): 910 − 915
LIANG Sen, YUAN Yufei, SHU Bo, et al. Construction technology of super large diameter and super deep pile foundation[J]. Building Structure, 2020, 50(Sup 2): 910 − 915. (in Chinese with English abstract)
[21] 周外男,缪玉卢. 坚硬岩石地层钻孔桩旋挖钻机成孔技术[J]. 世界桥梁,2019,47(4):27 − 31. [ZHOU Wainan,MIAO Yulu. Using rotary drilling rigs to make holes for bored piles in hard rock strata[J]. World Bridges,2019,47(4):27 − 31. (in Chinese with English abstract)
[22] 李明欢, 罗志雄, 古宇鹏, 等. 方形抗滑桩施工方法: CN107675703B[P]. 2019-11-19.
LI Minghuan, LUO Zhixiong, GU Yupeng, et al. Construction method of square-shaped slide-resistant pile: CN107675703B[P]. 2019-11-19. (in Chinese)
[23] 金勤胜,赵江,姚院峰,等. 旋挖钻孔灌注桩的混凝土充盈系数控制与现场试验[J]. 地质科技情报,2019,38(3):250 − 255. [JIN Qinsheng,ZHAO Jiang,YAO Yuanfeng,et al. Control and field tests of the concrete filling coefficient of cast-in-place piles dug by rotary drilling rig[J]. Geological Science and Technology Information,2019,38(3):250 − 255. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2019.0327
[24] 颜涛, 朱宾勤. 破碎岩土体中大直径抗滑桩施工工艺研究[J]. 武汉大学学报(工学版), 2020, 53(增刊1): 304-308
YAN Tao, ZHU Binqin. Study on construction technology of large diameter anti-slide pile in broken rock and soil[J]. Engineering Journal of Wuhan University, 2020, 53(Sup 1): 304-308. (in Chinese with English abstract)
[25] 刘宏亮,尹莉,付玲,等. 钻头圆锥钻齿切削岩石数值模拟以及一种新的解析估算模型[J]. 中国工程机械学报,2021,19(1):38 − 43. [LIU Hongliang,YIN Li,FU Ling,et al. Numerical study and a new analytical calculation thod for the rock cutting with the conical pick[J]. Chinese Journal of Construction Machinery,2021,19(1):38 − 43. (in Chinese with English abstract) doi: 10.15999/j.cnki.311926.2021.01.007
-