中国地质环境监测院
中国地质灾害防治工程行业协会
主办

复杂地层方形抗滑桩旋挖成孔工艺及工程应用

张敏, 周灵, 谭超, 廖黎韦, 陈中伟, 侯志勇. 复杂地层方形抗滑桩旋挖成孔工艺及工程应用[J]. 中国地质灾害与防治学报, 2023, 34(1): 85-93. doi: 10.16031/j.cnki.issn.1003-8035.202109027
引用本文: 张敏, 周灵, 谭超, 廖黎韦, 陈中伟, 侯志勇. 复杂地层方形抗滑桩旋挖成孔工艺及工程应用[J]. 中国地质灾害与防治学报, 2023, 34(1): 85-93. doi: 10.16031/j.cnki.issn.1003-8035.202109027
ZHANG Min, ZHOU Ling, TAN Chao, LIAO Liwei, CHEN Zhongwei, HOU Zhiyong. Techniques of rotary hole-drilling for square anti-slide piles in complex formation and its application[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 85-93. doi: 10.16031/j.cnki.issn.1003-8035.202109027
Citation: ZHANG Min, ZHOU Ling, TAN Chao, LIAO Liwei, CHEN Zhongwei, HOU Zhiyong. Techniques of rotary hole-drilling for square anti-slide piles in complex formation and its application[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 85-93. doi: 10.16031/j.cnki.issn.1003-8035.202109027

复杂地层方形抗滑桩旋挖成孔工艺及工程应用

  • 基金项目: 中石油管道有限责任公司科学研究与技术开发项目“山区油气管道线路设计与工程防护关键技术研究”(2020B-3106-0501)
详细信息
    作者简介: 张 敏(1989-),男,陕西汉中人,地质工程与地质资源专业,硕士,工程师,主要从事岩土工程勘察与地质灾害治理相关技术的研究工作。E-mail:minzhang1989@163.com
    通讯作者: 周 灵(1983-),男,硕士,浙江衢州人,地质工程专业,高级工程师,主要从事水工环地质勘查、项目管理工作。E-mail:49948147@qq.com
  • 中图分类号: P694

Techniques of rotary hole-drilling for square anti-slide piles in complex formation and its application

More Information
  • 为提高方形抗滑桩开挖成孔效率,研究适用于复杂条件岩质滑坡抗滑桩快速成孔的工艺,以成都东部某大型岩质滑坡101根大截面抗滑桩为对象,通过现场调查、理论分析及工程试验等方法,研究了方形抗滑桩工程成孔工艺、施工特征和不同地层成孔工艺适用体系。研究表明,研制的“旋挖钻孔+人工辅助清边”成孔工艺作业效率大大提高,在该抗滑桩工程中实施达到日平均进尺2.0 m高效率,顺利达到工期要求,进而解决了岩石成孔效率慢、工艺落后的问题;根据滑坡所处条件选择合适的施工工艺对抢险救灾工程至关重要,对于交通条件好、工期要求高的大型滑坡治理工程,优先考虑“旋挖钻孔+人工辅助清边”工艺;对于交通条件差、作业受限的小型滑坡治理工程,采用风镐开挖土体、水磨钻开挖岩石成孔工艺。

  • 加载中
  • 图 1  滑坡抢险救灾工程布置平面图

    Figure 1. 

    图 2  方形抗滑桩“桩芯旋挖+人工辅助清边”工艺设计模式图

    Figure 2. 

    图 3  方形抗滑桩“桩周旋挖引孔开挖回填+桩芯旋挖取土+人工辅助清边”工艺设计模式图

    Figure 3. 

    图 4  “桩周旋挖引孔开挖回填+桩芯旋挖取土+人工辅助清边”工艺施工整体操作流程图

    Figure 4. 

    图 5  “桩周旋挖引孔开挖回填+桩芯旋挖取土+人工辅助清边”实况图

    Figure 5. 

    表 1  旋挖钻开挖方形抗滑桩设计参数统计表

    Table 1.  Statistical table for design parameters of square anti-slide pile excavated by rotary drill

    序号桩径/m护壁厚度/m桩截面/m2旋挖孔数/孔旋挖截面/m2旋挖面积占比/%旋挖钻孔直径/m
    a2.0×2.50.26.9613.1445.111个2.0 m钻孔
    b2.0×3.00.28.1613.1438.481个2.0 m钻孔
    c3.0×4.00.316.5614.9129.631个2.5 m钻孔
    d3.0×4.00.316.5626.2837.922个2.0 m钻孔
    e3.0×4.00.316.5637.0742.662个2.0 m、1个1.0 m钻孔
    f3.0×4.00.316.5635.3032.003个1.5 m钻孔
    g3.0×4.00.316.5647.8547.402个2.0 m、2个1.0 m钻孔
    h3.0×4.00.316.5647.0742.664个1.5 m钻孔
    i3.0×4.00.316.5658.6452.142个2.0 m、3个1.0 m钻孔
    j3.0×4.00.316.5657.8547.404个1.5 m、1个1.0 m钻孔
    k3.0×4.00.316.5668.6452.144个1.5 m、2个1.0 m钻孔
    l3.0×4.00.316.5679.4256.884个1.5 m、3个1.0 m钻孔
    下载: 导出CSV

    表 2  抗滑桩桩孔成孔施工工艺特征对比表

    Table 2.  The table of construction process characteristics of anti slide pile hole

    施工工艺典型桩
    孔截面
    设备配置劳动力/人效率/(m·d−1费用/(元·m−3安全效益
    吊装凿岩水磨钻旋挖
    操作工
    土层软岩孤石、
    硬岩
    土方岩石
    传统人工
    挖孔工艺
    2.0 m×3.0 m铁锹、锄头、钢钎120.800.40120~180人员频繁上下井,受机械伤害、高空坠物、坠落的风险高
    3.0 m×4.0 m130.600.30
    风镐成孔
    工艺
    2.0 m×3.0 m4.5 m3空压机1台,
    风镐2台
    121.000.45160~220380~
    450
    人员频繁上下井,受机械伤害、高空坠物、坠落的风险高
    3.0 m×4.0 m5. 0 m3空压机1台,
    风镐3台
    130.800.35
    水磨钻
    成孔工艺
    2.0 m×3.0 m水磨钻机2台,4.5 m3空压机1台,风镐2台1220.90420~
    650
    人员频繁上下井,受机械伤害、高空坠物、触电、坠落的风险高
    3.0 m×4.0 m水磨钻机3台,4.5 m3空压机1台,风镐2台1230.60
    旋挖钻孔+人工
    辅助清边
    2.0 m×3.0 m旋挖机1台,3.5 m3空压机1台,风镐1台1222.62.52.5220~300320~
    465
    机械化程度高,人员不用频繁上下井,采取旋挖出渣,高空坠落、触电、机械伤害风险较低
    3.0 m×4.0 m旋挖机1台,5 m3空压机1台,风镐3台1322.22.02.0
    注:以上费用测算基于地质灾害施工预算定额并结合项目现场实际测算;—表示未使用此种方法。
    下载: 导出CSV

    表 3  非爆破开挖成孔工艺技术适用体系统计表

    Table 3.  Statistical table of applicable system for non-blasting excavation technology

    序号成孔技术优势缺点适用条件
    1传统人工挖孔工艺操作简单,对工人技术要求不高,易上手1.效率低,劳动强度大;
    2.仅适用在土方开挖
    1.适用于土质滑坡卵石土、碎石土等土层开挖;
    2.交通条件差,偏远山区
    2风镐开挖设备轻便,井下受限空间作业灵活,操作简单、技术性不强1.效率低,人工劳动强度大;
    2.人工下井作业频繁,安全隐患大;
    3.风镐钻进岩石粉尘大,对工人职业健康不利
    1.适用于交通条件差,大型设备无法进场,周围条件受限、作业空间受限的情况,例如偏远山区小型滑坡、管道、铁路等线状工程滑坡;
    2.适合小截面方桩的土层、碎石土、强风化基岩开挖
    3水磨钻
    开挖
    1.设备轻便,机动灵活,操作简单;
    2.适用岩层范围广,不同岩石硬度均可适用
    1.设备小、动力差、效率低,劳动强度大;
    2.人工下井作业频繁,安全隐患大
    1.适用于适用于交通条件差,大型设备无法进场,周围条件受限、作业空间受限的情况,例如偏远山区小型滑坡、管道、铁路等线状工程滑坡;
    2.适合小截面方桩硬度高的岩石开挖
    4旋挖钻孔+人工辅助清边1.设备动力大、机械化程度高、工人劳动强度降低、效率高;
    2.人员不用频繁上下井,不用吊桶出渣,安全隐患降低
    1.设备操作复杂,需要专业机械队伍作业;
    2.地理位置、交通条件要求高,能满足旋挖机进场到达孔位;
    3.作业扰动大,对滑坡稳定要求高,需要实时监测动态施工
    大型滑坡的大截面深桩成孔作业,地理位置交通条件好,对工期要求高的抢险救灾工程
    下载: 导出CSV
  • [1]

    裴振伟,年廷凯,吴昊,等. 滑坡地质灾害应急处置技术研究进展[J]. 防灾减灾工程学报,2021,41(6):1382 − 1394. [PEI Zhenwei,NIAN Tingkai,WU Hao,et al. Research progress on emergency treatment techniques for landslide geological hazards[J]. Journal of Disaster Prevention and Mitigation Engineering,2021,41(6):1382 − 1394. (in Chinese with English abstract)

    [2]

    朱庆,曾浩炜,丁雨淋,等. 重大滑坡隐患分析方法综述[J]. 测绘学报,2019,48(12):1551 − 1561. [ZHU Qing,ZENG Haowei,DING Yulin,et al. A review of major potential landslide hazards analysis[J]. Acta Geodaetica et Cartographica Sinica,2019,48(12):1551 − 1561. (in Chinese with English abstract)

    [3]

    姜清辉,郑俊,位伟,等. 重大滑坡灾害全过程调控减灾技术及试验验证与潜在应用[J]. 工程科学与技术,2020,52(5):62 − 70. [JIANG Qinghui,ZHENG Jun,WEI Wei,et al. Disaster prevention and mitigation technology for the whole process of serious landslides and its experimental verification and potential applications[J]. Advanced Engineering Sciences,2020,52(5):62 − 70. (in Chinese with English abstract)

    [4]

    陈其针,仲平,张贤,等. 构建中国自然灾害防灾减灾新体系[J]. 水文地质工程地质,2020,47(4):1 − 4. [CHEN Qizhen,ZHONG Ping,ZHANG Xian,et al. Establishment of an innovative system of natural disaster prevention and mitigation in China[J]. Hydrogeology & Engineering Geology,2020,47(4):1 − 4. (in Chinese with English abstract)

    [5]

    周定义,左小清,喜文飞,等. 基于SBAS-InSAR技术的深切割高山峡谷区滑坡灾害早期识别[J]. 中国地质灾害与防治学报,2022,33(2):16 − 24. [ZHOU Dingyi,ZUO Xiaoqing,XI Wenfei,et al. Early identification of landslide hazards in deep cut alpine canyon using SBAS-InSAR technology[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):16 − 24. (in Chinese with English abstract)

    [6]

    唐军峰,唐雪梅,周基,等. 滑坡堆积体变形失稳机制—以贵州剑河县东岭信滑坡为例[J]. 吉林大学学报(地球科学版),2022,52(2):503 − 516. [TANG Junfeng,TANG Xuemei,ZHOU Ji,et al. Deformation and instability mechanism of landslide accumulation:A case study of Donglingxin landslide accumulation in Jianhe County, Guizhou Province[J]. Journal of Jilin University (Earth Science Edition),2022,52(2):503 − 516. (in Chinese with English abstract)

    [7]

    魏少伟,隋颜阳,杨建民. 圆形与矩形截面抗滑桩抗滑性能的模型试验研究[J]. 岩土力学,2019,40(3):951 − 961. [WEI Shaowei,SUI Yanyang,YANG Jianmin. Model tests on anti-sliding mechanism of circular and rectangular cross section anti-sliding piles[J]. Rock and Soil Mechanics,2019,40(3):951 − 961. (in Chinese with English abstract)

    [8]

    刘宝生,宋京雷,郝社峰,等. 江苏宁镇地区典型下蜀土滑坡机理分析及应急处理措施[J]. 中国地质灾害与防治学报,2019,30(3):31 − 36. [LIU Baosheng,SONG Jinglei,HAO Shefeng,et al. Analysis and emergent control measures of the typical Xiashu loess landslides in Nanjing-Zhenjiang area,Jiangsu Province[J]. The Chinese Journal of Geological Hazard and Control,2019,30(3):31 − 36. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2019.03.06

    [9]

    邓时容,肖世国. 嵌固段顶部拓宽型抗滑桩计算方法[J]. 中国地质灾害与防治学报,2022,33(4):84 − 91. [DENG Shirong,XIAO Shiguo. Calculation method of stabilizing piles with broadened top at the built-in section[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):84 − 91. (in Chinese with English abstract)

    [10]

    王文沛, 殷跃平, 王立朝, 等. 排水抗滑桩技术研究现状及展望[J/OL]. 水文地质工程地质: 1 − 11[2022-12-19].

    WANG Wenpei, YIN Yueping, WANG Lichao, et al. Status and prospects of studies on anti-slide shaft technology[J]. Hydrogeology & Engineering Geology:1-11[2022-12-19]. (in Chinese with English abstract)

    [11]

    刘松,翟军,陶力,等. 各向异性岩体非爆破开挖新工法在地下工程中的应用[J]. 公路,2019,64(7):343 − 347. [LIU Song,ZHAI Jun,TAO Li,et al. Application of new construction method of non-blasting excavation of anisotropic rock mass in underground engineering[J]. Highway,2019,64(7):343 − 347. (in Chinese)

    [12]

    张敏,周灵,谭超,等. 油气管道滑坡应急治理水磨钻开挖工艺与应用[J]. 油气储运,2021,40(7):816 − 821. [ZHANG Min,ZHOU Ling,TAN Chao,et al. Water mill drilling technology for landslide emergency treatment of oil and gas pipelines and its application[J]. Oil & Gas Storage and Transportation,2021,40(7):816 − 821. (in Chinese with English abstract)

    [13]

    蔡奉祥,马耀举. 浅析坚硬花岗岩地层桥梁桩基成孔工艺[J]. 公路,2021,66(9):210 − 213. [CAI Fengxiang,MA Yaoju. Analysis on the hole forming technology of bridge pile foundation in hard granite stratum[J]. Highway,2021,66(9):210 − 213. (in Chinese)

    [14]

    张家伟,赵湖潮,王锐麟,等. 矩形截面抗滑桩施工中方形钻头的应用[J]. 建筑施工,2019,41(12):2132 − 2133. [ZHANG Jiawei,ZHAO Huchao,WANG Ruilin,et al. Application of square drilling bit in construction of anti-slide pile with rectangular section[J]. Building Construction,2019,41(12):2132 − 2133. (in Chinese with English abstract)

    [15]

    赵建兵, 张德忠, 郑旭, 等. 矩形抗滑桩机械快速成孔施工方法: CN110593753A[P]. 20191220

    ZHAO Jianbing, ZHANG Dezhong, ZHENG Xu, et al. Rectangular anti-sliding pile mechanical and fast hole forming construction method: CN110593753A[P]. 20191220. (in Chinese)

    [16]

    秦亮, 赵立新, 杨涛. 黄土地层矩形抗滑桩旋挖钻快速成桩技术及应用[J]. 隧道建设(中英文), 2019, 39(增刊2): 366 − 371

    QIN Liang, ZHAO Lixin, YANG Tao. Rapid pile drilling technology by rotary drilling of rectangular anti-slide pile in loess stratum and its application[J]. Tunnel Construction, 2019, 39(Sup 2): 366 − 371. (in Chinese with English abstract)

    [17]

    张智斌. 矩形截面抗滑桩机械成孔施工技术[J]. 交通世界,2020(8):133 − 135. [ZHANG Zhibin. Construction technology of mechanical hole-forming for rectangular section anti-sliding piles[J]. TranspoWorld,2020(8):133 − 135. (in Chinese)

    [18]

    赖晓燕, 郑上满, 林志成, 等. 一种软质岩层矩形抗滑桩施工方法: CN111691408B[P]. 2021-08-03

    LAI Xiaoyan, ZHENG Shangman, LIN Zhicheng, et al. Construction method of soft rock stratum rectangular slide-resistant pile: CN111691408B[P]. 2021-08-03. (in Chinese)

    [19]

    刘洋. 岩石特性对碎岩开挖方法的影响研究[D]. 石家庄: 石家庄铁道大学, 2020

    LIU Yang. Study on the influence of rock characteristics on the method of rock fragment and excavaction[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2020. (in Chinese with English abstract)

    [20]

    梁森, 袁誉飞, 舒波, 等. 超大直径超深桩基施工技术[J]. 建筑结构, 2020, 50(增刊2): 910 − 915

    LIANG Sen, YUAN Yufei, SHU Bo, et al. Construction technology of super large diameter and super deep pile foundation[J]. Building Structure, 2020, 50(Sup 2): 910 − 915. (in Chinese with English abstract)

    [21]

    周外男,缪玉卢. 坚硬岩石地层钻孔桩旋挖钻机成孔技术[J]. 世界桥梁,2019,47(4):27 − 31. [ZHOU Wainan,MIAO Yulu. Using rotary drilling rigs to make holes for bored piles in hard rock strata[J]. World Bridges,2019,47(4):27 − 31. (in Chinese with English abstract)

    [22]

    李明欢, 罗志雄, 古宇鹏, 等. 方形抗滑桩施工方法: CN107675703B[P]. 2019-11-19.

    LI Minghuan, LUO Zhixiong, GU Yupeng, et al. Construction method of square-shaped slide-resistant pile: CN107675703B[P]. 2019-11-19. (in Chinese)

    [23]

    金勤胜,赵江,姚院峰,等. 旋挖钻孔灌注桩的混凝土充盈系数控制与现场试验[J]. 地质科技情报,2019,38(3):250 − 255. [JIN Qinsheng,ZHAO Jiang,YAO Yuanfeng,et al. Control and field tests of the concrete filling coefficient of cast-in-place piles dug by rotary drilling rig[J]. Geological Science and Technology Information,2019,38(3):250 − 255. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2019.0327

    [24]

    颜涛, 朱宾勤. 破碎岩土体中大直径抗滑桩施工工艺研究[J]. 武汉大学学报(工学版), 2020, 53(增刊1): 304-308

    YAN Tao, ZHU Binqin. Study on construction technology of large diameter anti-slide pile in broken rock and soil[J]. Engineering Journal of Wuhan University, 2020, 53(Sup 1): 304-308. (in Chinese with English abstract)

    [25]

    刘宏亮,尹莉,付玲,等. 钻头圆锥钻齿切削岩石数值模拟以及一种新的解析估算模型[J]. 中国工程机械学报,2021,19(1):38 − 43. [LIU Hongliang,YIN Li,FU Ling,et al. Numerical study and a new analytical calculation thod for the rock cutting with the conical pick[J]. Chinese Journal of Construction Machinery,2021,19(1):38 − 43. (in Chinese with English abstract) doi: 10.15999/j.cnki.311926.2021.01.007

  • 加载中

(5)

(3)

计量
  • 文章访问数:  1176
  • PDF下载数:  46
  • 施引文献:  0
出版历程
收稿日期:  2021-09-26
修回日期:  2021-11-29
录用日期:  2022-11-03
刊出日期:  2023-02-25

目录