Analysis on lag effect of typhoon-induced landslide: A case study of typhoon “Lekima” in Qingtian County, Zhejiang Province
-
摘要:
我国东南沿海地区台风登陆频繁,伴生暴雨诱发的台风型滑坡造成了严重的经济损失和人员伤亡。已有研究在单峰型、多峰型台风暴雨的斜坡水文响应过程及稳定性分析方面取得了一定成果,但缺乏对台风暴雨型滑坡滞后效应的研究和机理分析。为此,以台风“利奇马”在浙江青田县的登陆为例,基于对台风型滑坡发生数量与降雨量的统计,构建16组不同结构组合的斜坡模型,模拟在台风登陆过程中不同降雨工况条件下斜坡的渗流—稳定性变化。结果表明,台风“利奇马”离陆后青田县内仍有26.4%的滑坡发生,存在一定滞后;不同结构组合斜坡稳定性在离陆后最低,相较于台风登陆前稳定性系数降低了13.82%;在台风登陆暴雨作用下,青田县斜坡稳定性结构影响参数中坡度最为敏感;讨论认为在台风不同登陆阶段的降雨会导致边坡的入渗特征差异,从而形成滞后效应。研究结论对于该区域的台风型滑坡早期识别具有一定指导意义。
Abstract:Typhoon landing is frequent in the southeast coastal areas of China, and the typhoon-induced landslide caused by associated rainstorms has caused serious economic losses and casualties. Some studies have made some achievements in the slope hydrological response process and stability analysis of single-peak and multi-peaks typhoon rainstorms, but research on mechanism analysis on the hysteresis effect of typhoon-induced landslide is lacked. Therefore, taking “Lekima” in Qingtian county, Zhejiang Province as an example, based on the statistics of the number and rainfall of typhoon-type landslides, this paper constructs 16 groups of slope models with different structural combinations to simulate the seepage-stability changes of slopes under different rainfall conditions during the landing of a typhoon. The results show that there are still 26.4% landslides in Qingtian county after typhoon “Lekima” left the land, which is lagging. The stability of slopes with different structural combinations is the lowest after landing, which is 13.82% lower than that before typhoon landing. Under the action of typhoon landing rainstorm, the slope is the most sensitive among the influencing parameters of slope stability structure in Qingtian county. It is considered that rainfall at different landing stages of the typhoon will lead to the difference of infiltration characteristics of the slope, thus forming a hysteresis effect. The conclusion has a certain guiding significance for the early identification of typhoon-induced landslides in this area.
-
Key words:
- typhoon /
- “Lekima” /
- typhoon-induced landslide /
- lag effect /
- Qingtian
-
-
表 1 台风“利奇马”登陆期间降雨量和滑坡数量
Table 1. Distribution of rainfall and landslides during the landing processes of typhoon “Lekima”
登陆期 滑坡数量 占总滑坡发生数/% 总降雨量/% 登陆时 8 53.3 51.81 离陆后 4 26.4 28.53 表 2 台风“利奇马”登陆期间滑坡地貌和结构
Table 2. Landslide landform and structure during the landing of typhoon “Lekima”
序号 登陆期 发生日期 位置 体积/m3 主滑方向/(°) 滑坡坡度/(°) 第四系残坡积物层厚/m 1 登陆时 2019-08-10 祯埠镇兆庄村 30 260 70 0.3~2.5 2 2019-08-10 季宅乡潘山村 2 51 55 0.5~3 3 2019-08-10 季宅乡潘山村 40 182 70 3~4 4 2019-08-10 鹤城街道北岸村 250 209 40 2~5 5 2019-08-10 东源镇红光村 40 205 70 3~5 6 2019-08-10 祯埠镇锦水村 200 136 65 1~3 7 2019-08-10 东源镇后降村 15 120 55 0.5 8 2019-08-10 东源镇平桥村 20 115 60 0.5~1 9 离陆后 2019-08-12 山口镇板石小区 30 100 30 1~2 10 2019-08-13 鹤城街道北岸村 50 150 45 1.5~3 11 2019-08-14 祯埠镇锦水村 100 65 40 1~3 12 2019-08-14 东源镇平桥村 80 209 45 3 表 3 影响因素划分
Table 3. Influencing factors and their divisions
影响因素 A B C 坡度/(°) 地下水位线 第四系残坡积物层厚/m 设计数量 4 3 3 设计值 A1 30 B1 1/3 C1 1 A2 35 B2 1/2 C2 2 A3 40 B3 2/3 C3 3 A4 45 表 4 影响因素正交设计表
Table 4. Table of orthogonal design for different influencing factors
组号 A B C 组号 A B C 组号 A B C 组号 A B C 1 A1 B1 C1 5 A2 B1 C1 9 A3 B1 C1 13 A4 B1 C1 2 A1 B1 C3 6 A2 B1 C2 10 A3 B1 C2 14 A4 B1 C3 3 A1 B2 C1 7 A2 B2 C1 11 A3 B2 C3 15 A4 B2 C2 4 A1 B3 C2 8 A2 B3 C3 12 A3 B3 C1 16 A4 B3 C1 表 5 润嘉小区项目基坑边坡岩体参数
Table 5. Physical and mechanical parameters of the Rock mass of a foundation pit slope in Runjia community project
岩性 天然重度
/(kN·m−3)黏聚力
/kPa内摩擦角
/(°)饱和渗透系数
/(m·d−1)饱和含水量
/%第四系残坡积物 16.22 19.1 12.6 43 0.4 凝灰岩 19 15 30 6.9×10-6 0.18 表 6 各影响因素sig值
Table 6. Sig values of all influencing factors
sig值 工况1 工况2 工况3 工况4 工况5 A坡度 0.006 0.003 0.003 0.005 0.005 B起始地下水位 0.682 0.630 0.630 0.815 0.176 C第四系残坡积物层厚 0.017 0.122 0.122 0.062 0.022 -
[1] EMANUEL K. Increasing destructiveness of tropical cyclones over the past 30 years[J]. Nature,2005,436(7051):686 − 688. doi: 10.1038/nature03906
[2] 韩晖. 近50年中国台风暴雨研究[D]. 北京: 北京师范大学, 2005
HAN Hui. A study on typhoon torrential rain over China during the last about 50 years[D]. Beijing: Beijing Normal University, 2005. (in Chinese with English abstract)
[3] LIU D F,PANG L,XIE B T. Typhoon disaster in China:prediction,prevention,and mitigation[J]. Natural Hazards,2009,49(3):421 − 436. doi: 10.1007/s11069-008-9262-2
[4] 陈光平. 台风引发温州市斜坡地质灾害的发育分布及影响因素研究[D]. 成都: 成都理工大学, 2011
CHEN Guangping. Study on distribution characteristics and influencing factors of slope geological hazard induced by typhoon in Wenzhou[D]. Chengdu: Chengdu University of Technology, 2011. (in Chinese with English abstract)
[5] 宿海良,袁雷武,王猛,等. 1949—2019年登陆中国的热带气旋特征及致灾分析[J]. 应用海洋学学报,2021,40(3):382 − 387. [SU Hailiang,YUAN Leiwu,WANG Meng,et al. Characteristics and disaster analysis of tropical cyclones landing in China in 1949-2019[J]. Journal of Applied Oceanography,2021,40(3):382 − 387. (in Chinese with English abstract) doi: 10.3969/J.ISSN.2095-4972.2021.03.002
[6] LIN M L,JENG F S. Characteristics of hazards induced by extremely heavy rainfall in Central Taiwan—typhoon Herb[J]. Engineering Geology,2000,58(2):191 − 207. doi: 10.1016/S0013-7952(00)00058-2
[7] 许鹏飞. “苏迪罗”台风引发浙江温州地质灾害类型与特征研究[J]. 地质灾害与环境保护,2017,28(2):40 − 47. [XU Pengfei. Study on the types and characteristics of geological disasters caused by typhoon soudelor in Wenzhou,Zhejiang Province[J]. Journal of Geological Hazards and Environment Preservation,2017,28(2):40 − 47. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-4362.2017.02.008
[8] 崔星,袁丽侠,陆彦俊. 台风诱发滑坡灾害的机理[J]. 自然灾害学报,2010,19(2):80 − 84. [CUI Xing,YUAN Lixia,LU Yanjun. Mechanism of typhoon-induced landslide hazards[J]. Journal of Natural Disasters,2010,19(2):80 − 84. (in Chinese with English abstract)
[9] 孔维伟,赵其华,韩俊,等. 台风滑坡变形破坏机制模型试验研究[J]. 工程地质学报,2013,21(2):297 − 303. [KONG Weiwei,ZHAO Qihua,HAN Jun,et al. Model experiments for deformation and failure mechanism of typhoon induced landslide[J]. Journal of Engineering Geology,2013,21(2):297 − 303. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2013.02.016
[10] 池永翔,陈凡. 台风暴雨条件下滑坡稳定性影响因素分析[J]. 地质学刊,2017,41(2):297 − 304. [CHI Yongxiang,CHEN Fan. Influencing factor analysis of landslide stability in typhoon rainstorm[J]. Journal of Geology,2017,41(2):297 − 304. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-3636.2017.02.020
[11] HIRATA Y,CHIGIRA M. Landslides associated with spheroidally weathered mantle of granite porphyry induced by 2011 Typhoon Talas in the Kii Peninsula,Japan[J]. Engineering Geology,2019,260:105217. doi: 10.1016/j.enggeo.2019.105217
[12] 唐新华. 台风暴雨条件下地质灾害的成因研究[J]. 福建建筑,2011(2):64 − 66. [TANG Xinhua. Research on the geology disaster origin under typhoon rainstorm condition[J]. Fujian Architecture & Construction,2011(2):64 − 66. (in Chinese with English abstract)
[13] 万金红,张葆蔚,杨向权,等. 海南省台风灾害特征分析[J]. 人民珠江,2016,37(1):45 − 48. [WAN Jinhong,ZHANG Baowei,YANG Xiangquan,et al. Characteristics of typhoon disaster in Hainan Province[J]. Pearl River,2016,37(1):45 − 48. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-9235.2016.01.011
[14] 程立渤,刘君秀,林修栋. 台风“利奇马”预报分析[J]. 绿色科技,2019(20):50 − 51. [CHENG Libo,LIU Junxiu,LIN Xiudong. Forecast analysis of typhoon lichima[J]. Journal of Green Science and Technology,2019(20):50 − 51. (in Chinese) doi: 10.3969/j.issn.1674-9944.2019.20.018
[15] 沈佳,董岩松,简文彬,等. 台风暴雨型土质滑坡演化过程研究[J]. 工程地质学报,2020,28(6):1290 − 1299. [SHEN Jia,DONG Yansong,JIAN Wenbin,et al. Study on evolution process of landslides triggered by typhoon rainstorm[J]. Journal of Engineering Geology,2020,28(6):1290 − 1299. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2019-540
[16] 张泰丽,周爱国,施斌,等. 台风暴雨条件下滑坡变形特征物理试验研究[J]. 水文地质工程地质,2016,43(6):127 − 132. [ZHANG Taili,ZHOU Aiguo,SHI Bin,et al. Physical experiment research on landslide deformation characteristics under the condition of the typhoon heavy rain[J]. Hydrogeology & Engineering Geology,2016,43(6):127 − 132. (in Chinese with English abstract)
[17] LO C M,LIN M L,TANG C L,et al. A kinematic model of the Hsiaolin landslide calibrated to the morphology of the landslide deposit[J]. Engineering Geology,2011,123(1/2):22 − 39.
[18] YU F C,CHEN T C,LIN M L,et al. Landslides and rainfall characteristics analysis in Taipei City during the typhoon nari event[J]. Natural Hazards,2006,37(1):153 − 167.
[19] 刘艳辉,温铭生,苏永超,等. 台风暴雨型地质灾害时空特征及预警效果分析[J]. 水文地质工程地质,2016,43(5):119 − 126. [LIU Yanhui,WEN Mingsheng,SU Yongchao,et al. Characteristics of geo-hazards induced by typhoon rainstorm and evaluation of geo-hazards early warning[J]. Hydrogeology & Engineering Geology,2016,43(5):119 − 126. (in Chinese with English abstract)
[20] 何立富,陈双,郭云谦. 台风利奇马(1909)极端强降雨观测特征及成因[J]. 应用气象学报,2020,31(5):513 − 526. [HE Lifu,CHEN Shuang,GUO Yunqian. Observation characteristics and synoptic mechanisms of typhoon lekima extreme rainfall in 2019[J]. Journal of Applied Meteorological Science,2020,31(5):513 − 526. (in Chinese with English abstract) doi: 10.11898/1001-7313.20200501
[21] 张义顺,吴雪琴,张达政,等. 浙江青田县地质灾害现状及成因分析[J]. 中国地质灾害与防治学报,2006,17(3):114 − 117. [ZHANG Yishun,WU Xueqin,ZHANG Dazheng,et al. Geo-hazards and their formation analysis in Qingtian County,Zhejiang Province[J]. The Chinese Journal of Geological Hazard and Control,2006,17(3):114 − 117. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-8035.2006.03.027
[22] 彭敏瑞,付成伟. 台风“利奇马”防御实践及思考[J]. 中国防汛抗旱,2019,29(11):4 − 8. [PENG Minrui,FU Chengwei. Practices and thinking on the defense of Typhoon Lekima No. 201909[J]. China Flood & Drought Management,2019,29(11):4 − 8. (in Chinese)
[23] 郭云谦,王毅,沈越婷,等. 台风“利奇马”不同区域降水极端性特征及成因分析[J]. 气象科学,2020,40(1):65 − 77. [GUO Yunqian,WANG Yi,SHEN Yueting,et al. Analysis on characteristics of the extreme precipitation of typhoon “Lekima”[J]. Journal of the Meteorological Sciences,2020,40(1):65 − 77. (in Chinese with English abstract)
[24] 刘晓汝,谢作威. 2019年超强台风“利奇马”引发浙江特大暴雨过程分析[J]. 气象科学,2020,40(1):89 − 96. [LIU Xiaoru,XIE Zuowei. Analysis of rainstorm caused by super typhoon “Lekima” in Zhejiang Province of 2019[J]. Journal of the Meteorological Sciences,2020,40(1):89 − 96. (in Chinese with English abstract)
[25] 邓夕胜,张元,唐煜. 基于失效概率的边坡降雨阈值曲面探讨[J]. 中国地质灾害与防治学报,2021,32(3):70 − 75. [DENG Xisheng,ZHANG Yuan,TANG Yu. Investigation on slope rainfall threshold surface based on failure probablolity[J]. The Chinese Journal of Geological Hazard and Control,2021,32(3):70 − 75. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2021.03-09
[26] 李绍红,朱建东,王少阳,等. 考虑降雨类型的基岩型浅层边坡稳定性分析方法[J]. 水文地质工程地质,2018,45(2):131 − 135. [LI Shaohong,ZHU Jiandong,WANG Shaoyang,et al. Stability analysis methods for the bedrock shallow slope considering rainfall types[J]. Hydrogeology & Engineering Geology,2018,45(2):131 − 135. (in Chinese with English abstract)
[27] 郭俊英,朱红雷. 浙江省小流域降雨型滑坡特点及机理研究[J]. 浙江水利科技,2014,42(3):7 − 10. [GUO Junying,ZHU Honglei. Study on characteristics and mechanism of rainfall-induced landslides in small watersheds of Zhejiang Province[J]. Zhejiang Hydrotechnics,2014,42(3):7 − 10. (in Chinese with English abstract)
[28] 池永翔. 台风暴雨条件下滑坡水文响应过程及稳定性分析[J]. 安徽农业科学,2015,43(19):176 − 180. [CHI Yongxiang. Study on the process of hydrological response and stability analysis of landslide body in typhoon rainstorm[J]. Journal of Anhui Agricultural Sciences,2015,43(19):176 − 180. (in Chinese with English abstract) doi: 10.3969/j.issn.0517-6611.2015.19.065
[29] DAI F C,LEE C F,WANG S J. Characterization of rainfall-induced landslides[J]. International Journal of Remote Sensing,2003,24(23):4817 − 4834. doi: 10.1080/014311601131000082424
-