Evaluation of geological hazards susceptibility based on watershed units:A case study of the Changdu City,Tibet
-
摘要:
作为在山地地区易发的自然灾种,地质灾害每年都给中国造成严重的经济损失。为揭示阐明典型高山峡谷区地质灾害易发性影响因素,文章以昌都市为研究区例,基于区内孕灾环境的差异,对其进行流域划分,同时选取海拔、坡度、地形起伏度等10个指标构建地质灾害易发性评价指标体系,基于随机森林模型对各流域地质灾害易发性空间分布进行研究。结果表明:(1)昌都市地质灾害类型主要以小型灾害为主,大型灾害分布相对较少但危害巨大,险情等级较高,同时,区域内地质灾害的空间分布具有沿河流与道路呈条带状分布的特征;(2)总体来看,各流域地质灾害的影响因素大致相同,但仍具有一定的差异性,金沙江流域受海拔与道路影响较为突出,澜沧江流域受居民点密度影响较为突出,而怒江流域受道路因素影响较为突出;(3)各流域地质灾害易发性空间分布存在差异,金沙江流域低易发面积占比最大,澜沧江与怒江流域均为中易发面积占比最大;三大流域均以高易发所占比最小,但在全流域内均有分布,且主要分布于人类活动较为强烈、岩性较软等区域。
Abstract:As a natural disaster prone to occur in mountainous areas, geological hazards cause serious economic losses to China every year. In order to reveal the factors influencing of geological hazards susceptibility in typical mountain valley, this paper takes Changdu City as the study area.Firstly, we analyze the spatial distribution of geological hazards, and then divides it into three major watersheds based on the differences of disaster-inducing environments in the study area, selects 10 indicators such as elevation, slope and terrain relief to build a evaluation index system of geological hazard susceptibility , and the weights of index determined based on the Random Forest. The spatial distribution of geological hazards in each watershed of Changdu City is obtained by overlaying with GIS, and it is found that: (1) The types of geological hazards in Changdu City are mainly small disasters, while the distribution of large disasters is relatively small but the hazards are huge and the danger level is high. (2) In general, the factors influencing geological hazards are more or less the same in each basin, but there are still some differences, with the factor of medium altitude and road being more prominent in the Jinsha River basin, the factor of density of settlements being more prominent in the Lancang River basin, and the factor of road being more prominent in the Nujiang River basin.(3) The Jinsha River basin has the largest area of low susceptibility, and the Lancang and Nujiang River basins have the largest area of medium susceptibility; all three basins have the smallest area of high susceptibility, but they are distributed in the whole basin, and mainly in areas with strong human activities and soft lithology.
-
Key words:
- Changdu City /
- random forest /
- geological hazards /
- susceptibility /
- watershed unit
-
-
图 3 随机森林(RF)模型原理图[37]
Figure 3.
表 1 按规模等级与稳定性划分灾害点等级
Table 1. Classification of disaster site level by size class
规模等级 数量/处 占比/% 稳定性评价 数量/处 占比/% 巨型 3 0.13 稳定 44 1.94 特大型 9 0.40 较稳定 425 18.70 大型 116 5.10 稳定性较差 818 35.99 中型 676 29.74 不稳定 831 36.56 小型 1469 64.63 易发 154 6.78 表 2 按险情等级划分灾害点等级
Table 2. Classification of disaster sites by danger level
险情等级 数量/处 占比/% Ⅰ级 10 0.44 Ⅱ级 53 2.33 Ⅲ级 324 14.25 Ⅳ级 1886 82.97 表 3 按距河流、道路距离划分
Table 3. Classification based on distance from rivers and roads
距离/m 距道路距离 距河流距离 数量/处 占比/% 数量/处 占比/% (0,100] 1092 48.04 742 32.64 (100,200] 287 12.63 455 20.02 (200,300] 168 7.39 247 10.87 >300 726 31.94 829 36.47 序号 硬度分组 主要岩性描述 赋值 1 坚硬岩类 变质岩、二长斑岩、闪长岩、石英砂岩、石英岩、长石、正长岩、
玄武岩、花岗岩、辉绿岩、安山岩、中厚层灰岩和板岩等0.1 2 较坚硬岩类 板岩、基性火山岩、碳酸盐岩、变质砂岩、超基性岩、大理岩、碎屑岩、中性火山岩等 0.3 3 较坚硬-较软弱岩类 片岩、片麻岩类等 0.5 4 较软岩类 灰岩、千枚岩、砂质泥岩、泥灰岩、粉砂岩等 0.7 5 软岩类 泥岩、泥质页岩、绿泥石片岩、粉砂岩、灰砂岩、灰岩粉砂岩、角闪片岩、
砾岩、泥岩、千枚岩砂岩、砂岩、页岩、绢云母片岩等0.9 表 5 地质灾害点密度与各指标相关性
Table 5. Correlation between geological hazard sites and each index
参数 海拔 坡度 地形起伏度 岩性 断层密度 年均降水量 河流密度 道路密度 NDVI 居民点密度 取值 −0.253*** −0.084 0.095* 0.251** 0.055*** −0.001 0.046 0.052 0.054* 0.056** 注:*为通过0.1显著性检验,**为通过0.05显著性检验,***为通过0.01显著性检验,未标记为未通过显著性检验。 -
[1] IPCC. Climate Change 2021: The Physical Science Basis[R]. Geneva: IPCC, 2021.
[2] 高杨,李滨,冯振,等. 全球气候变化与地质灾害响应分析[J]. 地质力学学报,2017,23(1):65 − 77. [GAO Yang,LI Bin,FENG Zhen,et al. Global climate change and geological disaster response analysis[J]. Journal of Geomechanics,2017,23(1):65 − 77. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-6616.2017.01.002
[3] 殷跃平. 中国地质灾害减灾战略初步研究[J]. 中国地质灾害与防治学报,2004,15(2):1 − 8. [YIN Yueping. Initial study on the hazard-relief strategy of geological hazard in China[J]. The Chinese Journal of Geological Hazard and Control,2004,15(2):1 − 8. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-8035.2004.02.001
[4] 自然资源部. 2019年全国地质灾害通报[R]. 北京: 中华人民共和国自然资源部, 2020
Ministry of Natural Resources of People’s Republic of China. The Bulletin of National Geological Disaster in 2019[R]. Beijing: Ministry of Natural Resources of People’s Republic of China. 2020. (in Chinese with English abstract)
[5] 彭惠,穆柯,董元宏. 川藏交通走廊冻融侵蚀风险评价与区划研究[J]. 公路,2019,64(10):157 − 161. [PENG Hui,MU Ke,DONG Yuanhong. Research on risk assessment and regionalization of freeze-thaw erosion in Sichuan-Tibet transportation corridor[J]. Highway,2019,64(10):157 − 161. (in Chinese with English abstract)
[6] 谭玉敏,郭栋,白冰心,等. 基于信息量模型的涪陵区地质灾害易发性评价[J]. 地球信息科学学报,2015,17(12):1554 − 1562. [TAN Yumin,GUO Dong,BAI Bingxin,et al. Geological hazard risk assessment based on information quantity model in Fuling District,Chongqing City,China[J]. Journal of Geo-Information Science,2015,17(12):1554 − 1562. (in Chinese with English abstract)
[7] 赵帅,赵洲. 基于信息量模型的地质灾害易发性评价[J]. 水力发电,2019,45(3):27 − 32. [ZHAO Shuai,ZHAO Zhou. Geological hazard risk assessment based on information quantity model[J]. Water Power,2019,45(3):27 − 32. (in Chinese with English abstract) doi: 10.3969/j.issn.0559-9342.2019.03.007
[8] 陈立华,李立丰,吴福,等. 基于GIS与信息量法的北流市地质灾害易发性评价[J]. 地球与环境,2020,48(4):471 − 479. [CHEN Lihua,LI Lifeng,WU Fu,et al. Evaluation of the geological hazard vulnerability in the Beiliu City based on GIS and information value model[J]. Earth and Environment,2020,48(4):471 − 479. (in Chinese with English abstract)
[9] 王哲,易发成. 基于层次分析法的绵阳市地质灾害易发性评价[J]. 水文地质工程地质,2007,34(3):93 − 98. [WANG Zhe,YI Facheng. Evaluation of geological hazard probability of occurrence based on analytical hierarchy process in Mianyang City[J]. Hydrogeology & Engineering Geology,2007,34(3):93 − 98. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2007.03.024
[10] 金艳珠,谈树成,虎雄岗,等. 基于层次分析法与GIS相结合的岩溶塌陷地质灾害易发性分区评估—以云南省师宗县为例[J]. 热带地理,2012,32(2):173 − 178. [JIN Yanzhu,TAN Shucheng,HU Xionggang,et al. Geo-hazard susceptibility zoning evaluation of Karst collapse based on the combination of AHP and GIS:A case study of Shizong,Yunnan[J]. Tropical Geography,2012,32(2):173 − 178. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-5221.2012.02.010
[11] 李郎平,兰恒星,郭长宝,等. 基于改进频率比法的川藏铁路沿线及邻区地质灾害易发性分区评价[J]. 现代地质,2017,31(5):911 − 929. [LI Langping,LAN Hengxing,GUO Changbao,et al. Geohazard susceptibility assessment along the Sichuan-Tibet railway and its adjacent area using an improved frequency ratio method[J]. Geoscience,2017,31(5):911 − 929. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-8527.2017.05.004
[12] CHOI J,OH H J,LEE H J,et al. Combining landslide susceptibility maps obtained from frequency ratio,logistic regression,and artificial neural network models using ASTER images and GIS[J]. Engineering Geology,2012,124:12 − 23. doi: 10.1016/j.enggeo.2011.09.011
[13] LEE S,SAMBATH T. Landslide susceptibility mapping in the Damrei Romel area,Cambodia using frequency ratio and logistic regression models[J]. Environmental Geology,2006,50(6):847 − 855. doi: 10.1007/s00254-006-0256-7
[14] YILMAZ I. Landslide susceptibility mapping using frequency ratio,logistic regression,artificial neural networks and their comparison:a case study from Kat landslides (Tokat—Turkey)[J]. Computers & Geosciences,2009,35(6):1125 − 1138.
[15] ROSSI M,GUZZETTI F,REICHENBACH P,et al. Optimal landslide susceptibility zonation based on multiple forecasts[J]. Geomorphology,2010,114(3):129 − 142. doi: 10.1016/j.geomorph.2009.06.020
[16] 田春山,刘希林,汪佳. 基于CF和Logistic回归模型的广东省地质灾害易发性评价[J]. 水文地质工程地质,2016,43(6):154 − 161. [TIAN Chunshan,LIU Xilin,WANG Jia. Geohazard susceptibility assessment based on CF model and Logistic Regression models in Guangdong[J]. Hydrogeology & Engineering Geology,2016,43(6):154 − 161. (in Chinese with English abstract)
[17] 黄健敏,赵国红,廖芸婧,等. 基于Logistic回归的降雨诱发区域地质灾害易发性区划及预报模型建立—以安徽歙县为例[J]. 中国地质灾害与防治学报,2016,27(3):98 − 105. [HUANG Jianmin,ZHAO Guohong,LIAO Yunjing,et al. Research on rainfall induced regional geo-hazard forecast model based on the logistic regression[J]. The Chinese Journal of Geological Hazard and Control,2016,27(3):98 − 105. (in Chinese with English abstract)
[18] 祁于娜,王磊. 层次分析-熵值定权法应用于山区城镇地质灾害易发性评价[J]. 测绘通报,2021(6):112 − 116. [QI Yuna,WANG Lei. Application of AHP-entropy weight method in hazards susceptibility assessment in mountain town[J]. Bulletin of Surveying and Mapping,2021(6):112 − 116. (in Chinese with English abstract)
[19] 陈绪钰,倪化勇,李明辉,等. 基于加权信息量和迭代自组织聚类的地质灾害易发性评价[J]. 灾害学,2021,36(2):71 − 78. [CHEN Xuyu,NI Huayong,LI Minghui,et al. Geo-hazard susceptibility evaluation based on weighted information value model and ISODATA cluster[J]. Journal of Catastrophology,2021,36(2):71 − 78. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-811X.2021.02.013
[20] 李远远,梅红波,任晓杰,等. 基于确定性系数和支持向量机的地质灾害易发性评价[J]. 地球信息科学学报,2018,20(12):1699 − 1709. [LI Yuanyuan,MEI Hongbo,REN Xiaojie,et al. Geological disaster susceptibility evaluation based on certainty factor and support vector machine[J]. Journal of Geo-Information Science,2018,20(12):1699 − 1709. (in Chinese with English abstract) doi: 10.12082/dqxxkx.2018.180349
[21] 曹鹏,黎应书,李宗亮,等. 西藏昌都白格滑坡斜坡地质结构特征及成因机制[J]. 地球科学,2021,46(9):3397 − 3409. [CAO Peng,LI Yingshu,LI Zongliang,et al. Geological structure characteristics and genetic mechanism of baige landslide slope in Changdu,Tibet[J]. Earth Science,2021,46(9):3397 − 3409. (in Chinese with English abstract)
[22] 邓建辉,高云建,余志球,等. 堰塞金沙江上游的白格滑坡形成机制与过程分析[J]. 工程科学与技术,2019,51(1):9 − 16. [DENG Jianhui,GAO Yunjian,YU Zhiqiu,et al. Analysis on the formation mechanism and process of baige landslides damming the upper reach of Jinsha River,China[J]. Advanced Engineering Sciences,2019,51(1):9 − 16. (in Chinese with English abstract)
[23] 李孝攀. 基于GIS的甘孜—昌都区域地质灾害易发性区划及其铁路线路规划设计应用研究[D]. 成都: 西南交通大学, 2018
LI Xiaopan. Research on geological hazard space division and application of railway line planning and design in Ganzi-Changdu region based on GIS[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese with English abstract)
[24] 高华喜,殷坤龙. 降雨与滑坡灾害相关性分析及预警预报阀值之探讨[J]. 岩土力学,2007,28(5):1055 − 1060. [GAO Huaxi,YIN Kunlong. Discuss on the correlations between landslides and rainfall and threshold for landslide early-warning and prediction[J]. Rock and Soil Mechanics,2007,28(5):1055 − 1060. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2007.05.039
[25] 王腾,孙晓光,卓永,等. 近36年藏东“三江”流域农业气候资源变化特征[J]. 中国农学通报,2017,33(9):106 − 113. [WANG Teng,SUN Xiaoguang,ZHUO Yong,et al. Agricultural climate resources:variation characteristics in the river source region of eastern Tibet in recent 36 years[J]. Chinese Agricultural Science Bulletin,2017,33(9):106 − 113. (in Chinese with English abstract) doi: 10.11924/j.issn.1000-6850.casb16120095
[26] 毛刚,胡月萍,陈媛. 地质灾害频发山区聚落安全性探索—以横断山系的集镇和村庄为例[J]. 西安建筑科技大学学报(自然科学版),2014,46(1):101 − 108. [MAO Gang,HU Yueping,CHEN Yuan. The safety of the settlement in mountain area with frequent geological disasters:Examples of villages and towns in the Hengduan Mountains[J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition),2014,46(1):101 − 108. (in Chinese with English abstract)
[27] 昌都市统计局国家调查局昌都调查队. 2018年昌都地区统计年鉴[Z]. 昌都, 2019
Changdu City Bureau of Statistics National Bureau of Investigation Changdu Survey Team. 2018 Changdu Regional Statistical Yearbook[Z]. Changdu, 2019. (in Chinese with English abstract)
[28] 唐川,马国超. 基于地貌单元的小区域地质灾害易发性分区方法研究[J]. 地理科学,2015,35(1):91 − 98. [TANG Chuan,MA Guochao. Small regional geohazards susceptibility mapping based on geomorphic unit[J]. Scientia Geographica Sinica,2015,35(1):91 − 98. (in Chinese with English abstract)
[29] 鲁霞,兰安军,母浩江,等. 基于信息量模型的盘州市地质灾害易发性评价[J]. 科学技术与工程,2020,20(14):5544 − 5551. [LU Xia,LAN Anjun,MU Haojiang,et al. Geological hazard risk assessment based on information quantity model in Panzhou City[J]. Science Technology and Engineering,2020,20(14):5544 − 5551. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2020.14.013
[30] 中华人民共和国国土资源部. 地质灾害排查规范: DZ/T 0284—2015[S]. 北京: 中国标准出版社, 2015
Ministry of Land and Resources of the People’s Republic of China. Specification of dynamic survey on geological hazards: DZ/T 0284—2015[S]. Beijing: Standards Press of China, 2015. (in Chinese)
[31] 中华人民共和国国土资源部. 滑坡崩塌泥石流调查规范: DZ/T0261-2014[S]. 北京: 中华人民共和国自然资源部, 2014
Ministry of Natural Resources of People’s Republic of China. Landslide and debris flow investigation specifications: DZ/T0261-2014[S]. Beijing: Ministry of Natural Resources of People’s Republic of China. 2014. (in Chinese with English abstract)
[32] 王盈,金家梁,袁仁茂. 藏东南地区地质灾害空间分布及影响因素分析[J]. 地震研究,2019,42(3):428 − 437. [WANG Ying,JIN Jialiang,YUAN Renmao. Analysis on spatial distribution and influencing factors of geological disasters in southeast Tibet[J]. Journal of Seismological Research,2019,42(3):428 − 437. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0666.2019.03.017
[33] 田丰,张军,冉有华,等. 甘肃陇南市泥石流灾害危险性及影响因子评价[J]. 灾害学,2017,32(3):197 − 203. [TIAN Feng,ZHANG Jun,RAN Youhua,et al. Assessment of debris flow disaster hazard and influence factors in Longnan District[J]. Journal of Catastrophology,2017,32(3):197 − 203. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-811X.2017.03.033
[34] BREIMAN L. Random forests[J]. Machine Learning,2001,45:5 − 32. doi: 10.1023/A:1010933404324
[35] REICHSTEIN M,CAMPS-VALLS G,STEVENS B,et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature,2019,566(7743):195 − 204. doi: 10.1038/s41586-019-0912-1
[36] 方匡南,吴见彬,朱建平,等. 随机森林方法研究综述[J]. 统计与信息论坛,2011,26(3):32 − 38. [FANG Kuangnan,WU Jianbin,ZHU Jianping,et al. A review of technologies on random forests[J]. Statistics & Information Forum,2011,26(3):32 − 38. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-3116.2011.03.006
[37] 廖小平,徐风光,蔡旭东,等. 香丽高速公路边坡地质灾害发育特征与易发性区划[J]. 中国地质灾害与防治学报,2021,32(5):121 − 129. [LIAO Xiaoping,XU Fengguang,CAI Xudong,et al. Development characteristics and susceptibality zoning of slope geological hazards in Xiangli expressway[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):121 − 129. (in Chinese with English abstract)
[38] 屠水云,张钟远,付弘流,等. 基于CF与CF-LR模型的地质灾害易发性评价[J]. 中国地质灾害与防治学报,2022,33(2):96 − 104. [TU Shuiyun,ZHANG Zhongyuan,FU Hongliu,et al. Geological hazard susceptibility evaluation based on CF and CF-LR model[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):96 − 104. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2022.02-12
[39] 罗守敬,王珊珊,付德荃. 北京山区突发性地质灾害易发性评价[J]. 中国地质灾害与防治学报,2021,32(4):126 − 133. [LUO Shoujing,WANG Shanshan,FU Dequan. Assessment on the susceptibility of sudden geological hazards in mountainous areas of Beijing[J]. The Chinese Journal of Geological Hazard and Control,2021,32(4):126 − 133. (in Chinese with English abstract)
[40] 刘坚,李树林,陈涛. 基于优化随机森林模型的滑坡易发性评价[J]. 武汉大学学报·信息科学版,2018,43(7):1085 − 1091. [LIU Jian,LI Shulin,CHEN Tao. Landslide susceptibility assesment based on optimized random forest model[J]. Geomatics and Information Science of Wuhan University,2018,43(7):1085 − 1091. (in Chinese with English abstract)
[41] 刘飞. 青藏高原生态风险综合评估与区域分异[D]. 西宁: 青海师范大学, 2020
LIU Fei. Comprehensive assessment ecological risk and regional differentiation in the Qinghai-Tibet Plateau[D]. Xining: Qinghai Normal University, 2020. (in Chinese with English abstract)
[42] 向茂西,李永红,贺卫中,等. 陕西省汉中市汉台区地质灾害形成条件分析[J]. 科技视界,2014(9):37 − 39. [XIANG Maoxi,LI Yonghong,HE Weizhong,et al. Analysis of the formation conditions of geological disaster in Hantai,Hanzhong,Shaanxi[J]. Science & Technology Vision,2014(9):37 − 39. (in Chinese with English abstract) doi: 10.19694/j.cnki.issn2095-2457.2014.09.024
[43] 张田田,杨为民,万飞鹏. 浑河断裂带地质灾害发育特征及其成因机制[J]. 吉林大学学报(地球科学版),2022,52(1):149 − 161. [ZHANG Tiantian,YANG Weimin,WAN Feipeng. Characteristics and formation mechanism of geohazards in Hunhe fault zone[J]. Journal of Jilin University (Earth Science Edition),2022,52(1):149 − 161. (in Chinese with English abstract)
-