Analysis on time-dependent deformation of landslide based on creep characteristics of weathered red mudstone: A case study of the Luobao landslide in Tianshui of Gansu Province
-
摘要:
风化红层泥岩蠕变是我国黄土高原区边坡变形失稳的重要原因之一。选取天水市雒堡村巨型多级旋转滑坡,利用KTL全自动三轴仪和基于连续介质力学的离散单元方法(CDEM)数值模拟手段,开展了风化红层泥岩蠕变本构模型和滑坡时效变形研究。通过0.1~0.7 MPa不同围压下的分级加载蠕变试验,揭示了风化红层泥岩试样瞬时弹性变形、衰减蠕变和稳态蠕变三阶段的蠕变行为;同一围压下,轴向变形量随应力水平的增大而增大,且增长速率也逐渐增大;同一应力水平下,轴向变形量随围压的增大而增大,且增长速率也缓慢增大。拟合建立了试样Burgers蠕变本构模型方程。在此基础上,通过数值模拟揭示了自重应力下1 a尺度的滑体时效变形特征:约98.6%的变形发生在60 d内,随后进入稳态蠕变阶段;滑体水平位移量由浅及深逐渐减小,变形主要集中在后缘Ⅰ级滑体,最大位移约54.1 cm,滑坡变形模式表现为推移式;剪应变主要位于每一级滑体后缘滑带陡-缓转折处,最大剪应变约0.23 %,但未整体贯通,总体处于较稳定状态。
Abstract:Creep of weathered red mudstone is one of the important reasons inducing slope deformation and instability in loess plateau of China. Creep constitutive model of weathered red mudstone and time-dependent deformation characteristics of landslide were performed by using the KTL automatic triaxial instrument and CDEM, in giant -scale multiple rotational landslide of Luobao village in Tianshui City. Under different confining pressures between 0.1−0.7 MPa, the stepwise-loading creep tests on weathered red mudstone samples was performed. The creep process and creep characteristics were analyzed. The results show that the samples have experienced instantaneous elastic deformation stage, attenuation creep stage and steady creep stage. Under the same confining pressure, the increment of elastic deformation varies with different stress levels. The increasing rate of deformation is also increased gradually. At a certain stress level, the final creep of the samples under different confining pressures increases gradually with the increase of confining pressures. The increasing rate of deformation is increased slowly. The fitting results show that Burgers creep constitutive model is in high coincidence with the experimental data. On this basis, time-dependent deformation characteristics and the pattern at 1-year scale under gravity stress were revealed by numerical simulation. The results show that almost 95% of deformation occurred within 60 days, and then it entered the steady creep stage. The horizontal displacement of the slide mass decreases with the increase of the depth. The deformation is mainly concentrated on the slide mass Ⅰ, the maximum displacement is about 54.1 cm. The landslide shows a thrust load-caused deformation pattern. Shear strain occurs at the steep-slow junction of the trailing part of each slidemass, the maximum shear strain is about 0.23%, but no transfixion occurred. The whole slope is stable.
-
Key words:
- red mudstone /
- landslide /
- creep /
- Burgers model /
- time-dependent deformation /
- Tianshui
-
表 1 泥岩基本物性参数
Table 1. Basic physical parameters of mudstone
参数 干密度/(g·cm−3) 湿密度/(g·cm−3) 颗粒密度/(g·cm−3) 孔隙率/% 软化系数 数值 2.13~2.34 2.17~2.36 2.59~2.74 10.8~22.0 0.3~0.97(0.70*) 注:*为均值。 表 2 岩土体物理力学参数
Table 2. Physical and mechanical parameters of rock and soil mass
序号 材料 密度
/(g·cm−3)弹性模量
/MPa泊松比 黏聚力
/kPa内摩擦角
/(°)1 滑体 2.08 171.0 0.25 15.0 32 2 滑带土 2.00 106.0 0.26 10.0 23 3 黄土 1.60 56.2 0.28 36.4 25 4 泥岩 2.13 1920.0 0.20 5130.0 34 表 3 滑坡滑体及滑带土蠕变参数
Table 3. Creep parameters of landslide deposits and the sliding body
序号 材料 /MPa /(MPa·h) /MPa /(MPa·h) 1 滑体 68.4 342000 68.4 300 2 滑带土 40.6 176000 40.6 85 注:表中变量参照式(2)变量解释。 -
[1] 张军. 陇中盆地秦安—天水地区新近纪沉积物成因与环境变化[D]. 兰州: 兰州大学, 2008
ZHANG Jun. Formation cause of the Neogene sediments in Tianshui-Qin’an area in Longzhong Basin and the paleoenvironmental change[D]. Lanzhou: Lanzhou University, 2008. (in Chinese with English abstract)
[2] 张永双,曲永新. 硬土—软岩的厘定及其判别分类[J]. 地质科技情报,2000,19(1):77 − 80. [ZHANG Yongshuang,QU Yongxin. Definition of hard soil-soft rock and its discrimination and classification[J]. Geological Science and Technology Information,2000,19(1):77 − 80. (in Chinese with English abstract)
[3] 程强,寇小兵,黄绍槟,等. 中国红层的分布及地质环境特征[J]. 工程地质学报,2004,12(1):34 − 40. [CHENG Qiang,KOU Xiaobing,HUANG Shaobin,et al. The distributes and geologic environment characteristics of red beds in China[J]. Journal of Engineering Geology,2004,12(1):34 − 40. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2004.01.007
[4] WANG Tao,LIU Jiamei,SHI Jusong,et al. Probabilistic seismic landslide hazard assessment:A case study in Tianshui,Northwest China[J]. Journal of Mountain Science,2020,17(1):173 − 190. doi: 10.1007/s11629-019-5618-1
[5] 窦晓东,张泽林. 甘肃舟曲垭豁口滑坡复活机理及成因探讨[J]. 中国地质灾害与防治学报,2021,32(2):9 − 18. [DOU Xiaodong,ZHANG Zelin. Mechanism and causal analysis on the Yahuokou landslide reactivation and causes(Zhouqu County,Gansu,China)[J]. The Chinese Journal of Geological Hazard and Control,2021,32(2):9 − 18. (in Chinese with English abstract)
[6] 李滨,殷跃平,吴树仁,等. 多级旋转黄土滑坡形成机理及失稳模式[J]. 吉林大学学报(地球科学版),2012,42(3):760 − 769. [LI Bin,YIN Yueping,WU Shuren,et al. Failure mode and formation mechanism of multiple rotational loess landslides[J]. Journal of Jilin University (Earth Science Edition),2012,42(3):760 − 769. (in Chinese with English abstract)
[7] FURUYA G,SASSA K,HIURA H,et al. Mechanism of creep movement caused by landslide activity and underground erosion in crystalline schist,Shikoku Island,southwestern Japan[J]. Engineering Geology,1999,53(3/4):311 − 325.
[8] 张泽林. 典型黄土滑坡启动机制及成灾模式研究[D]. 武汉: 中国地质大学, 2016
ZHANG Zelin. The initating mechanism and runout pattern of typical seismic loess landslides[D]. Wuhan: China University of Geosciences, 2016. (in Chinese with English abstract)
[9] ZHANG Zelin,WANG Tao,WU Shuren,et al. Dynamics characteristic of red clay in a deep-seated landslide,northwest China:An experiment study[J]. Engineering Geology,2018,239:254 − 268. doi: 10.1016/j.enggeo.2018.04.005
[10] SUN Ping,LI Rongjian,JIANG Hao,et al. Earthquake-triggered landslides by the 1718 Tongwei earthquake in Gansu Province,northwest China[J]. Bulletin of Engineering Geology and the Environment,2017,76(4):1281 − 1295. doi: 10.1007/s10064-016-0949-4
[11] 卢萍珍,曾静,盛谦. 软黏土蠕变试验及其经验模型研究[J]. 岩土力学,2008,29(4):1041 − 1044. [LU Pingzhen,ZENG Jing,SHENG Qian. Creep tests on soft clay and its empirical models[J]. Rock and Soil Mechanics,2008,29(4):1041 − 1044. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2008.04.035
[12] 万玲,彭向和,杨春和,等. 泥岩蠕变行为的实验研究及其描述[J]. 岩土力学,2005,26(6):924 − 928. [WAN Ling,PENG Xianghe,YANG Chunhe,et al. An investigation to the creep of claystone[J]. Rock and Soil Mechanics,2005,26(6):924 − 928. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2005.06.020
[13] 张泽林, 吴树仁, 王涛, 等. 甘肃天水泥岩剪切蠕变行为及其模型研究[J]. 岩石力学与工程学报, 2019, 38(增刊2): 3603 − 3617
ZHANG Zelin, WU Shuren, WANG Tao, et al. Study on shear creep behavior and its model of mudstone in Tianshui, Gansu Province[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(Sup 2): 3603 − 3617. (in Chinese with English abstract)
[14] LI Anrun,DENG Hui,ZHANG Haojie,et al. The shear-creep behavior of the weak interlayer mudstone in a red-bed soft rock in acidic environments and its modeling with an improved Burgers model[J]. Mechanics of Time-Dependent Materials,2021:1 − 18.
[15] 谌文武, 原鹏博, 刘小伟. 分级加载条件下红层软岩蠕变特性试验研究[J]. 岩石力学与工程学报, 2009, 28(增刊1): 3076 − 3081
CHEN Wenwu, YUAN Pengbo, LIU Xiaowei. Study on creep properties of red-bed soft rock under step load[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(Sup 1): 3076 − 3081. (in Chinese with English abstract)
[16] 吴礼舟,李部,孙萍. 甘肃甘谷裂隙泥岩剪切蠕变行为及其修正模型研究[J]. 地质力学学报,2017,23(6):923 − 934. [WU Lizhou,LI Bu,SUN Ping. Study on shear creep behavior of mudstone and its correction model of Gangu fissure in Gansu[J]. Journal of Geomechanics,2017,23(6):923 − 934. (in Chinese with English abstract)
[17] 周小棚,李部,吴礼舟,等. 甘肃天水泥岩压缩蠕变特性试验及模型研究[J]. 科学技术与工程,2018,18(2):139 − 145. [ZHOU Xiaopeng,LI Bu,WU Lizhou,et al. Gansu Tianshui mudstone rock compression creep property test and model research[J]. Science Technology and Engineering,2018,18(2):139 − 145. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2018.02.020
[18] PUZRIN A M,SCHMID A. Evolution of stabilised creeping landslides[J]. Geotechnique,2012,62(6):491 − 501.
[19] WANG Yanchao,CONG Lu,YIN Xiaomeng,et al. Creep behaviour of saturated purple mudstone under triaxial compression[J]. Engineering Geology,2021,288:106159. doi: 10.1016/j.enggeo.2021.106159
[20] 刘天翔,杜兆萌,程强,等. 红层软岩高边坡的时效变形特性[J]. 科学技术与工程,2020,20(27):11315 − 11322. [LIU Tianxiang,DU Zhaomeng,CHENG Qiang,et al. Time-dependent deformation characteristics of high slope in red layer soft rock[J]. Science Technology and Engineering,2020,20(27):11315 − 11322. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2020.27.050
[21] 古鹏翔,骆俊晖,刘先林,等. 考虑滑带土蠕变特性的边坡长期稳定性分析[J]. 安全与环境工程,2020,27(4):94 − 101. [GU Pengxiang,LUO Junhui,LIU Xianlin,et al. Long-term stability analysis of slope considering creep behaviors of sliding zone soils[J]. Safety and Environmental Engineering,2020,27(4):94 − 101. (in Chinese with English abstract)
[22] 张晓奇,胡新丽,刘忠绪,等. 呷爬滑坡滑带土蠕变特性及其稳定性[J]. 地质科技通报,2020,39(6):145 − 153. [ZHANG Xiaoqi,HU Xinli,LIU Zhongxu,et al. Creep properties and stability of sliding zone soil in Gapa landslide[J]. Bulletin of Geological Science and Technology,2020,39(6):145 − 153. (in Chinese with English abstract)
[23] 陈鹏,施炜,杨家喜,等. 天水盆地晚新生代构造演化:对青藏高原北东向扩展的指示意义[J]. 大地构造与成矿学,2016,40(2):308 − 322. [CHEN Peng,SHI Wei,YANG Jiaxi,et al. Late cenozoic tectonic evolution of Tianshui Basin:Implications for the northeast growth of Tibetan Plateau[J]. Geotectonica et Metallogenia,2016,40(2):308 − 322. (in Chinese with English abstract)
[24] 张治亮,徐卫亚,王伟. 向家坝水电站坝基挤压带岩石三轴蠕变试验及非线性黏弹塑性蠕变模型研究[J]. 岩石力学与工程学报,2011,30(1):132 − 140. [ZHANG Zhiliang,XU Weiya,WANG Wei. Study of triaxial creep tests and its nonlinear visco-elastoplastic creep model of rock from compressive zone of dam foundation in Xiangjiaba hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(1):132 − 140. (in Chinese with English abstract)
[25] 孙萍,祝恩珍,张帅,等. 地震作用下甘肃天水地区黄土-泥岩接触面滑坡机理[J]. 现代地质,2019,33(1):218 − 226. [SUN Ping,ZHU Enzhen,ZHANG Shuai,et al. Mechanism of earthquake-triggered loess-mudstone interface landslide in Tianshui area,Gansu Province[J]. Geoscience,2019,33(1):218 − 226. (in Chinese with English abstract)
[26] 王浩杰,孙萍,韩帅,等. 甘肃通渭“9·14”常河滑坡成因机理[J]. 现代地质,2021,35(3):732 − 743. [WANG Haojie,SUN Ping,HAN Shuai,et al. Failure mechanism of the Changhe landslide on September 14,2019 in Tongwei,Gansu[J]. Geoscience,2021,35(3):732 − 743. (in Chinese with English abstract)
[27] 张泽林,王涛,吴树仁,等. 泥岩中软弱夹层的剪切力学特性研究[J]. 岩石力学与工程学报,2021,40(4):713 − 724. [ZHANG Zelin,WANG Tao,WU Shuren,et al. Study on shear mechanical properties of mudstone with weak intercalation[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(4):713 − 724. (in Chinese with English abstract)
[28] 闫玉平,肖世国. 考虑滑带强度参数分区取值的堆积层滑坡稳定性分析方法[J]. 中国地质灾害与防治学报,2020,31(2):44 − 49. [YAN Yuping,XIAO Shiguo. Stability analysis method for bedrock-talus landslides considering strength parameter partition of slip shear band[J]. The Chinese Journal of Geological Hazard and Control,2020,31(2):44 − 49. (in Chinese with English abstract)
[29] 杨玉茹,李文平,王启庆. 上新世红土微观结构参数与渗透系数的变化关系研究[J]. 水文地质工程地质,2020,47(2):153 − 160. [YANG Yuru,LI Wenping,WANG Qiqing. A study of the relationship between the coefficient of permeability and microstructure of the pliocene laterite[J]. Hydrogeology & Engineering Geology,2020,47(2):153 − 160. (in Chinese with English abstract)
[30] 张海清,贾会会,聂庆科. 土体抗拉强度对均质边坡稳定性的影响[J]. 吉林大学学报(地球科学版),2021,51(5):1324 − 1337. [ZHANG Haiqing,JIA Huihui,NIE Qingke. Influence of soil tensile strength on stability of homogeneous slope[J]. Journal of Jilin University (Earth Science Edition),2021,51(5):1324 − 1337. (in Chinese with English abstract)
[31] 李滨.多级旋转型黄土滑坡形成演化机理研究[D].西安: 长安大学, 2009
LI Bin. Research on formation evolution mechanism of multiple rotational loess landslides[D]. Xi’an: Chang’an University, 2009. (in Chinese with English abstract)
[32] 赵洲,宋晶,刘锐鸿,等. 各向异性对软土力学特性影响的离散元模拟[J]. 水文地质工程地质,2021,48(2):70 − 77. [ZHAO Zhou,SONG Jing,LIU Ruihong,et al. Discrete element simulation of the influence of anisotropy on the mechanical properties of soft soil[J]. Hydrogeology & Engineering Geology,2021,48(2):70 − 77. (in Chinese with English abstract)
[33] 曹海莹,郭毅磊,杜量. 动、静载环境下界面土直剪试验[J]. 吉林大学学报(地球科学版),2021,51(5):1381 − 1390. [CAO Haiying,GUO Yilei,DU Liang. Direct shear test of soil interfacial layer under dynamic and static load[J]. Journal of Jilin University (Earth Science Edition),2021,51(5):1381 − 1390. (in Chinese with English abstract)