中国地质环境监测院
中国地质灾害防治工程行业协会
主办

基于最大熵模型的中尼交通廊道滑坡易发性分析

万洋, 郭捷, 马凤山, 刘佳, 宋烨炜. 基于最大熵模型的中尼交通廊道滑坡易发性分析[J]. 中国地质灾害与防治学报, 2022, 33(2): 88-95. doi: 10.16031/j.cnki.issn.1003-8035.2022.02-11
引用本文: 万洋, 郭捷, 马凤山, 刘佳, 宋烨炜. 基于最大熵模型的中尼交通廊道滑坡易发性分析[J]. 中国地质灾害与防治学报, 2022, 33(2): 88-95. doi: 10.16031/j.cnki.issn.1003-8035.2022.02-11
WAN Yang, GUO Jie, MA Fengshan, LIU Jia, SONG Yewei. Landslide susceptibility assessment based on MaxEnt model of along Sino-Nepal traffic corridor[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 88-95. doi: 10.16031/j.cnki.issn.1003-8035.2022.02-11
Citation: WAN Yang, GUO Jie, MA Fengshan, LIU Jia, SONG Yewei. Landslide susceptibility assessment based on MaxEnt model of along Sino-Nepal traffic corridor[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 88-95. doi: 10.16031/j.cnki.issn.1003-8035.2022.02-11

基于最大熵模型的中尼交通廊道滑坡易发性分析

  • 基金项目: 第二次青藏高原综合科学考察研究专题(2019QZKK0904);中国科学院国际合作局国际伙伴计划项目(131551KYSB20180042)
详细信息
    作者简介: 万 洋(1997-),女,吉林长春人,硕士研究生,从事工程地质灾害研究。E-mail:wanyang19@mails.ucas.ac.cn
    通讯作者: 郭 捷(1984-),男,河北沧州人,博士,高级工程师,从事工程地质与岩土工程研究。E-mail: guojie@mail.iggcas.ac.cn
  • 中图分类号: P642.22

Landslide susceptibility assessment based on MaxEnt model of along Sino-Nepal traffic corridor

More Information
  • 中尼交通廊道作为中国近年来建设的重点区域,地质灾害频发,尤其是滑坡灾害层出不穷。文章基于对G216国道沿线地质灾害的实地调查以及遥感解译结果,以最大熵模型为方法,利用169个灾害点数据和8个评价因子图层预测了研究区滑坡灾害的易发性分布。根据占比划分五级风险区。结果表明,滑坡易发概率以G216为中心向外辐射逐渐降低。同时采用刀切法检验评价因子对预测结果的贡献度,确定了滑坡主导因素及其阈值。最后通过ROC曲线验证了模型的可靠性。为中尼边境公路区域建设提供一种地质灾害预测分析模型,也为青藏地区公路边坡防灾减灾提供有效支撑。

  • 加载中
  • 图 1  研究区地理位置

    Figure 1. 

    图 2  研究区灾害点分布及典型灾害

    Figure 2. 

    图 3  研究区评价因子图层

    Figure 3. 

    图 4  滑坡易发性分区

    Figure 4. 

    图 5  ROC曲线和AUC值箱形图

    Figure 5. 

    图 6  评价因子对滑坡发生的贡献率

    Figure 6. 

    图 7  评价因子响应图

    Figure 7. 

    表 1  评价因子选取及其来源

    Table 1.  Selection of evaluation factors and sources

    评价因子数据来源
    高程地理空间数据云(http://www.gscloud.cn
    坡向ArcGIS 高程提取
    坡度ArcGIS 高程提取
    断层密度西藏自治区吉隆县地质图(全国地质资料馆http://www.ngac.org.cn/)及现场调查
    河流密度西藏自治区吉隆县地质图(全国地质资料馆http://www.ngac.org.cn/)及现场调查
    岩性西藏自治区吉隆县地质图(全国地质资料馆http://www.ngac.org.cn/)及现场调查
    地震加速度中国地震动参数区划图
    (http://www.gb18306.net/)
    植被覆盖指数地理空间数据云
    http://www.gscloud.cn
    下载: 导出CSV

    表 2  评价因子相关性检验

    Table 2.  Correlation test of evaluation factors

    高程坡向坡度断层密度河流密度岩性地震峰值加速度植被覆盖指数
    高程1
    坡向0.0561
    坡度−0.3070.3881
    断层密度0.414−0.177−0.1041
    河流密度0.251−0.141−0.1240.0301
    岩性0.459−0.125−0.0980.3980.2001
    地震峰值加速度0.4910.322−0.4410.446−0.1820.4421
    植被覆盖指数0.406-0.4660.468−0.156−0.107−0.163−0.4671
    下载: 导出CSV
  • [1]

    LI C, VAN DER HILST R D, MELTZER A S, et al. Subduction of the Indian lithosphere beneath the Tibetan plateau and burma[J]. Earth and Planetary Science Letters,2008,274(1/2):157 − 168.

    [2]

    PARK N W. Using maximum entropy modeling for landslide susceptibility mapping with multiple geoenvironmental data sets[J]. Environmental Earth Sciences,2015,73(3):937 − 949. doi: 10.1007/s12665-014-3442-z

    [3]

    KORNEJADY A, OWNEGH M, BAHREMAND A. Landslide susceptibility assessment using maximum entropy model with two different data sampling methods[J]. CATENA,2017,152:144 − 162. doi: 10.1016/j.catena.2017.01.010

    [4]

    AKGUN A, DAG S, BULUT F. Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models[J]. Environmental Geology,2008,54(6):1127 − 1143. doi: 10.1007/s00254-007-0882-8

    [5]

    CARRARA A, CARDINALI M, DETTI R, et al. GIS techniques and statistical models in evaluating landslide hazard[J]. Earth Surface Processes and Landforms,1991,16(5):427 − 445. doi: 10.1002/esp.3290160505

    [6]

    AYALEW L, YAMAGISHI H, MARUI H, et al. Landslides in Sado Island of Japan: part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications[J]. Engineering Geology,2005,81(4):432 − 445. doi: 10.1016/j.enggeo.2005.08.004

    [7]

    刘佳, 赵海军, 马凤山, 等. 基于改进变异系数法的G109拉萨—那曲段泥石流危险性评价[J]. 中国地质灾害与防治学报,2020,31(4):63 − 70. [LIU Jia, ZHAO Haijun, MA Fengshan, et al. Risk assessment of G109 Lhasa-Naqu debris flow based on improved coefficient of variation[J]. The Chinese Journal of Geological Hazard and Control,2020,31(4):63 − 70. (in Chinese with English abstract)

    [8]

    CHANG K T, MERGHADI A, YUNUS A P, et al. Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques[J]. Scientific Reports,2019,9:12296. doi: 10.1038/s41598-019-48773-2

    [9]

    宋盛渊, 潘玉珍, 陈剑平, 等. 基于联系期望的库岸泥石流危险性评价: 以乌东德库区为例[J]. 工程地质学报,2015,23(4):719 − 724. [SONG Shengyuan, PAN Yuzhen, CHEN Jianping, et al. Connectional expectation based evaluation of debris flow risk degree: A case study of Wudongde reservoir[J]. Journal of Engineering Geology,2015,23(4):719 − 724. (in Chinese with English abstract)

    [10]

    CERYAN N, CERYAN S. An application of the interaction matrices method for slope failure susceptibility zoning: Dogankent settlement area (Giresun, NE Turkey)[J]. Bulletin of Engineering Geology and the Environment,2008,67(3):375 − 385. doi: 10.1007/s10064-008-0144-3

    [11]

    周天伦, 曾超, 范晨, 等. 基于快速聚类-信息量模型的汶川及周边两县滑坡易发性评价[J]. 中国地质灾害与防治学报,2021,32(5):137 − 150. [ZHOU Tianlun, ZENG Chao, FAN Chen, et al. Landslide susceptibility assessment based on K-means cluster information model in Wenchuan and two neighboring counties, China[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):137 − 150. (in Chinese with English abstract)

    [12]

    王雷, 吴君平, 赵冰雪, 等. 基于GIS和信息量模型的安徽池州地质灾害易发性评价[J]. 中国地质灾害与防治学报,2020,31(3):96 − 103. [WANG Lei, WU Junping, ZHAO Bingxue, et al. Susceptibility assessment of geohazards in Chizhou City of Anhui Province based on GIS and informative model[J]. The Chinese Journal of Geological Hazard and Control,2020,31(3):96 − 103. (in Chinese with English abstract)

    [13]

    李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012

    LI Hang. Statistical learning methods[M]. Beijing: Tsinghua University Press, 2012. (in Chinese)

    [14]

    孙莉, 王山, 王正元, 等. 基于最大熵模型的枸杞生态适宜区预测[J]. 宁夏大学学报(自然科学版),2018,39(2):143 − 147. [SUN Li, WANG Shan, WANG Zhengyuan, et al. Ecological suitable prediction of lycium barbarum L. based on maximum entropy model[J]. Journal of Ningxia University (Natural Science Edition),2018,39(2):143 − 147. (in Chinese with English abstract)

    [15]

    FELICÍSIMO Á M, CUARTERO A, REMONDO J, et al. Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: A comparative study[J]. Landslides,2013,10(2):175 − 189. doi: 10.1007/s10346-012-0320-1

    [16]

    扈秀宇, 秦胜伍, 窦强, 等. 基于GIS和随机森林模型的泥石流敏感性分析: 以吉林省洮南市北部山区为例[J]. 水土保持通报,2019,39(5):204 − 210. [HU Xiuyu, QIN Shengwu, DOU Qiang, et al. Susceptibility analysis of debris flow based on GIS and random forest—A case study of a mountainous area in northern Taonan City, Jilin Province[J]. Bulletin of Soil and Water Conservation,2019,39(5):204 − 210. (in Chinese with English abstract)

    [17]

    杨人凡. 西藏吉隆盆地冲锥堆积体的成因研究[D]. 成都: 成都理工大学, 2011

    YANG Renfan. Research of Chongzhui accumulation body′s cause of formation in basin Jilong Tibet[D]. Chengdu: Chengdu University of Technology, 2011. (in Chinese with English abstract)

    [18]

    韩培锋, 王镁河, 姜兆华, 等. 西藏吉隆县地质灾害及其影响因素分析[J]. 中国地质灾害与防治学报,2020,31(2):111 − 118. [HAN Peifeng, WANG Meihe, JIANG Zhaohua, et al. Geological disasters and their influencing factors in Jilong County, Tibet[J]. The Chinese Journal of Geological Hazard and Control,2020,31(2):111 − 118. (in Chinese with English abstract)

    [19]

    祝建, 吴臻林, 雷曙辉. 西藏吉隆口岸G216国道K81特大型滑坡形成过程和机理分析[J]. 工程勘察,2017,45(7):20 − 24. [ZHU Jian, WU Zhenlin, LEI Shuhui. Formation process and mechanism analysis of the super large-scale landslide at K81km of the national highway G216 in Tibet Jilong Port[J]. Geotechnical Investigation & Surveying,2017,45(7):20 − 24. (in Chinese with English abstract)

    [20]

    侯轶攀, 杨宜军, 王鹏来. 小流域评价单元在地质灾害详细调查易发性分区中的应用[J]. 资源环境与工程,2019,33(增刊 1):36 − 42. [HOU Yipan, YANG Yijun, WANG Penglai. Application of small watershed evaluation unit in detailed investigation of geological disaster and susceptibility zoning[J]. Resources Environment & Engineering,2019,33(Sup 1):36 − 42. (in Chinese with English abstract)

    [21]

    邹宇. 川藏交通走廊滑坡灾害内外动力耦合作用机理及空间分布预测[D]. 北京: 中国科学院大学, 2017

    ZOU Yu. Coupling between endogenic and exogenic geological mechanisms and spatial distribution prediction model of the traffic corridor in Sichuan-Tibet[D]. Beijing: University of Chinese Academy of Sciences, 2017. (in Chinese with English abstract)

    [22]

    骆畅. 山地城市绿地生态系统服务价值评估及规划策略研究: 以重庆市主城区为例[D]. 北京: 北京林业大学, 2018

    LUO Chang. Ecosystem services value of greenspaces in mountainous urban area—A case study in Chongqing[D]. Beijing: Beijing Forestry University, 2018. (in Chinese with English abstract)

    [23]

    PHILLIPS S J, DUDÍK M, ELITH J, et al. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data[J]. Ecological Applications:a Publication of the Ecological Society of America,2009,19(1):181 − 197. doi: 10.1890/07-2153.1

    [24]

    RAES N, TER STEEGE H. A null-model for significance testing of presence-only species distribution models[J]. Ecography,2007,30(5):727 − 736. doi: 10.1111/j.2007.0906-7590.05041.x

    [25]

    邱浩杰, 孙杰杰, 徐达, 等. 基于MaxEnt模型预测鹅掌楸在中国的潜在分布区[J]. 浙江农林大学学报,2020,37(1):1 − 8. [QIU Haojie, SUN Jiejie, XU Da, et al. MaxEnt model-based prediction of potential distribution of Liriodendron chinense in China[J]. Journal of Zhejiang A & F University,2020,37(1):1 − 8. (in Chinese with English abstract) doi: 10.11833/j.issn.2095-0756.2020.01.001

    [26]

    张宝龙, 范文. 临空条件对边坡稳定性的影响[J]. 公路交通科技,2018,35(7):35 − 41. [ZHANG Baolong, FAN Wen. Influence of free face condition on slope stability[J]. Journal of Highway and Transportation Research and Development,2018,35(7):35 − 41. (in Chinese with English abstract)

    [27]

    刘道胜. 中尼铁路佩枯措至吉隆段第四纪断裂活动性与工程选线设计[J]. 水文地质工程地质, 10.16030/j.cnki.issn.1000-3665.202109013.

    LIU Daosheng. Quaternary fault activity and engineering effects along the Peikucuo-Gilong segment of the China-Nepal railway[J]. Hydrogeology & Engineering Geology, 10.16030/j.cnki.issn.1000-3665.202109013. (in Chinese with English abstract)

    [28]

    杨志华, 郭长宝, 吴瑞安,等. 青藏高原巴塘断裂带地震滑坡危险性预测研究[J]. 水文地质工程地质,2021,48(5):91 − 101. [YANG Zhihua, GUO Changbao, WU Ruian, et al. Predicting seismic landslide hazard in the Batang fault zone of the Qinghai-Tibet Plateau[J]. Hydrogeology & Engineering Geology,2021,48(5):91 − 101. (in Chinese with English abstract)

  • 加载中

(7)

(2)

计量
  • 文章访问数:  1830
  • PDF下载数:  25
  • 施引文献:  0
出版历程
收稿日期:  2021-11-29
修回日期:  2022-01-11
录用日期:  2022-02-28
刊出日期:  2022-04-25

目录