中国地质环境监测院
中国地质灾害防治工程行业协会
主办

基于证据权法的昆明五华区地质灾害易发性评价

白光顺, 杨雪梅, 朱杰勇, 张世涛, 祝传兵, 康晓波, 孙滨, 周琰嵩. 基于证据权法的昆明五华区地质灾害易发性评价[J]. 中国地质灾害与防治学报, 2022, 33(5): 128-138. doi: 10.16031/j.cnki.issn.1003-8035.202203037
引用本文: 白光顺, 杨雪梅, 朱杰勇, 张世涛, 祝传兵, 康晓波, 孙滨, 周琰嵩. 基于证据权法的昆明五华区地质灾害易发性评价[J]. 中国地质灾害与防治学报, 2022, 33(5): 128-138. doi: 10.16031/j.cnki.issn.1003-8035.202203037
BAI Guangshun, YANG Xuemei, ZHU Jieyong, ZHANG Shitao, ZHU Chuanbing, KANG Xiaobo, SUN Bin, ZHOU Yansong. Susceptibility assessment of geological hazards in Wuhua District of Kuming, China using the weight evidence method[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 128-138. doi: 10.16031/j.cnki.issn.1003-8035.202203037
Citation: BAI Guangshun, YANG Xuemei, ZHU Jieyong, ZHANG Shitao, ZHU Chuanbing, KANG Xiaobo, SUN Bin, ZHOU Yansong. Susceptibility assessment of geological hazards in Wuhua District of Kuming, China using the weight evidence method[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 128-138. doi: 10.16031/j.cnki.issn.1003-8035.202203037

基于证据权法的昆明五华区地质灾害易发性评价

详细信息
    作者简介: 白光顺(1986-),男,山东巨野人,博士研究生,主要从事工程地质理论和应用研究。E-mail:baiguangshun@foxmail.com
    通讯作者: 杨雪梅(1989-),女,云南丽江人,工程师,主要从事工程地质、测绘等工作和应用研究。E-mail:yangxuemeilj@foxmail.com
  • 中图分类号: P208;P694

Susceptibility assessment of geological hazards in Wuhua District of Kuming, China using the weight evidence method

More Information
  • 地质灾害易发性评价是国土空间规划和区域地质灾害防灾减灾的重要依据。为探索适合云南高原低山丘陵区地质灾害易发性评价方法,论文选择云南省昆明市五华区为典型研究区,选择工程地质岩组、距断裂构造线距离、高程、坡度、坡向、坡面曲率、距公路线距离和土地利用类型等8个因素,应用基于贝叶斯理论的证据权法进行地质灾害易发性评价,通过对各因素各分级(分类)综合证据权重的近似学生化检验(Student-T)优化了各因素的分级(分类)方案。采用文中所构建模型评价得出的易发性分区结果表明,89.9%和9.1%的地灾点落入高和中易发区,对比分析显示建模结果与地质灾害发育情况吻合度高,较好地揭示了研究区地质灾害易发性特征,可为昆明市五华区及云南高原其它低山丘陵区地质灾害防治规划提供参考。

  • 加载中
  • 图 1  因素基础数据图

    Figure 1. 

    图 2  地质灾害分布图(底图为高程和山体阴影渲染)

    Figure 2. 

    图 3  各因素分级分区和地灾点数量相关性统计图

    Figure 3. 

    图 4  因素证据权重计算结果图

    Figure 4. 

    图 5  模型预测性能ROC曲线图

    Figure 5. 

    图 6  地质灾害易发性栅格图

    Figure 6. 

    图 7  典型区因素和地质灾害分布图

    Figure 7. 

    表 1  数据简介

    Table 1.  Data introduction

    数据灾点及
    致灾要素
    类型来源
    地灾地灾点矢量点地质灾害风险普查
    地质工程地质岩组矢量面云南省地质局
    距断裂
    距离
    矢量线和缓冲区云南省地质局
    地形地貌高程栅格12.5 m DEM,
    https://asf.alaska.edu/
    坡度栅格根据DEM,应用ArcGIS提取
    坡向栅格根据DEM,应用ArcGIS提取
    坡面曲率栅格根据DEM,应用ArcGIS提取
    道路距公路
    距离
    矢量线缓冲区http://www.openstreetmap.org
    根据矢量线用ArcGIS制作
    土地利用
    类型
    土地利用
    类型
    栅格ESA WorldCover 10 m 2020,https://esa-worldcover.org/en
    下载: 导出CSV

    表 2  因素证据权重计算结果表

    Table 2.  Calculation results of factor evidence weights

    因素因素分级因素面积
    百分比/%
    地灾数
    百分比/%
    正权重
    W+
    W+
    标准差
    负权重WW
    标准差
    综合权重

    标准差
    StudentT分类
    归并
    归并后
    权重
    权重
    标准差
    高程/m<17350.010.000.00000.00000.00000.00000.00000.00000.0000合并−0.27440.1607
    1735~18000.360.000.00000.00000.00000.00000.00000.00000.0000合并−0.27440.1607
    1 800~1 8500.651.120.55501.0082−0.00480.10710.55981.01380.5522合并−0.27440.1607
    1 850~1 9009.5510.110.05740.3350−0.00630.11230.06360.35330.1801合并−0.27440.1607
    1 900~1 9206.814.49−0.41860.50150.02480.1090−0.44340.5133−0.8639合并−0.27440.1607
    1 920~1 9506.7321.351.17580.2329−0.17200.12001.34780.26205.144441.17580.2329
    1 950~2 00012.5023.600.64390.2202−0.13680.12180.78070.25163.103250.64390.2202
    2 000~2 10023.2511.24−0.73180.31690.14680.1131−0.87870.3365−2.611013−0.73180.3169
    2 100~2 20018.8620.220.07080.2369−0.01720.11920.08790.26520.3315合并−0.27440.1607
    2 200~2 30011.484.49−0.94360.50090.07670.1090−1.02030.5126−1.9903合并−0.27440.1607
    2 300~2 4007.023.37−0.73830.57860.03890.1084−0.77720.5887−1.3201合并−0.27440.1607
    2 400~2 5002.610.000.00000.00000.00000.00000.00000.00000.0000合并−0.27440.1607
    >2 5000.190.000.00000.00000.00000.00000.00000.00000.0000合并−0.27440.1607
    坡度/(°)<518.724.49−1.42970.50060.16200.1091−1.59160.5123−3.10685−1.42970.5006
    5~1538.3237.08−0.02880.17490.01740.1343−0.04620.2205−0.2093合并0.02210.1450
    15~2528.7241.570.37850.16550.20230.13920.58080.21632.685330.37850.1655
    25~3511.6012.360.06880.3030−0.00930.11380.07820.32370.2416合并0.02210.1450
    >352.644.490.54360.5040−0.01950.10900.56320.51571.0921合并0.02210.1450
    坡向北东9.7211.240.14600.3179−0.01710.11300.16310.33740.4833合并−0.00010.1065
    12.7715.730.21070.2688−0.03490.11600.24560.29280.8388合并−0.00010.1065
    南东16.9219.100.12220.2438−0.02680.11840.14900.27100.5496合并−0.00010.1065
    13.1611.24−0.15920.31750.02210.1130−0.18130.3370−0.5379合并−0.00010.1065
    南西10.5710.11−0.04480.33480.00520.1123−0.05000.3532−0.1415合并−0.00010.1065
    西13.456.74−0.69540.40920.07540.1103−0.77070.4238−1.8186合并−0.00010.1065
    北西14.5812.36−0.16670.30270.02590.1138−0.19260.3234−0.5955合并−0.00010.1065
    8.8213.480.42900.2908−0.05290.11450.48190.31251.5423合并−0.00010.1065
    坡面
    曲率
    −0.75~−0.28(凹形)3.205.620.56900.4509−0.02550.10960.59450.46401.2812合并0.09600.1367
    −0.28~−0.15(凹形)10.6422.470.75770.2258−0.14320.12090.90090.25623.517110.75770.2258
    −0.15~−0.05(凹形)19.6626.970.31970.2054−0.09620.12460.41590.24031.7311合并0.09600.1367
    −0.05~0.05(平坦)34.1816.85−0.71190.25880.23620.1169−0.94820.2840−3.33886−0.71190.2588
    0.05~0.15(凸形)17.5321.350.19900.2307−0.04780.12010.24680.26010.9489合并0.09600.1367
    0.15~0.28(凸形)11.005.62−0.67660.44830.05930.1097−0.73590.4615−1.5945合并0.09600.1367
    0.28~0.69(凸形)3.781.12−1.21941.00140.02750.1071−1.24691.0071−1.2381合并0.09600.1367
    工程
    地质
    岩组
    松散碎石土体13.156.74−0.67360.40920.07200.1103−0.74560.4238−1.7592合并−0.18440.1329
    石英砂岩7.5510.110.29470.3354−0.02830.11230.32300.35370.9131合并−0.18440.1329
    砂岩、泥岩、页岩23.0835.960.44740.1781−0.18440.13300.63180.22222.843030.44740.1781
    白云岩、灰岩38.8837.08−0.04910.17490.03010.1343−0.07930.2205−0.3596合并−0.18440.1329
    玄武岩16.9410.11−0.52060.33430.08000.1124−0.60050.3526−1.7029合并−0.18440.1329
    侵入岩脉0.290.000.00000.00000.00000.00000.00000.00000.0000合并−0.18440.1329
    距断层
    距离/m
    0~505.6312.360.79730.3046−0.07460.11370.87190.32522.681430.79730.3046
    50~1005.865.62−0.04290.44920.00260.1096−0.04550.4624−0.0985合并−0.07460.1137
    100~30019.8719.10−0.03970.24360.00960.1184−0.04930.2709−0.1822合并−0.07460.1137
    300~50016.1120.220.22990.2371−0.05080.11920.28060.26541.0574合并−0.07460.1137
    500~100026.1217.98−0.37640.25080.10560.1177−0.48200.2770−1.7397合并−0.07460.1137
    1000~2 00022.7524.720.08400.2143−0.02610.12270.11010.24690.4457合并−0.07460.1137
    >20003.660.000.00000.00000.00000.00000.00000.00000.0000合并−0.07460.1137
    距主要
    公路
    距离/m
    0~5011.1129.210.98200.1986−0.22960.12651.21160.23545.146930.98200.1986
    50~1008.1413.480.51110.2909−0.06050.11450.57160.31261.8284合并−0.12570.1296
    100~30020.6220.22−0.01960.23680.00500.1192−0.02470.2651−0.0931合并−0.12570.1296
    300~50012.533.37−1.31950.57810.10050.1084−1.42010.5882−2.41444−1.31950.5781
    500~100017.2116.85−0.02100.25940.00430.1168−0.02530.2845−0.0889合并−0.12570.1296
    1000~2 00016.6710.11−0.50380.33430.07650.1124−0.58030.3527−1.6455合并−0.12570.1296
    >200013.726.74−0.71530.40920.07850.1103−0.79390.4238−1.8733合并−0.12570.1296
    土地
    利用
    类型
    林地54.7028.09−0.07940.14970.08830.1515−0.16760.2130−0.7870合并−0.12870.1183
    灌木0.140.000.00000.00000.00000.00000.00000.00000.0000合并−0.12870.1183
    草地7.398.990.19790.3556−0.01760.11160.21550.37270.5783合并−0.12870.1183
    耕地16.5410.11−0.49550.33430.07490.1124−0.57040.3527−1.6174合并−0.12870.1183
    建筑12.8211.24−0.13320.31750.01820.1130−0.15140.3370−0.4492合并−0.12870.1183
    裸地或稀疏植被8.0941.570.87190.2452−0.12870.11831.00060.27233.674640.87190.2452
    开阔水域0.320.000.00000.00000.00000.00000.00000.00000.0000合并−0.12870.1183
    下载: 导出CSV

    表 3  地质灾害易发性分区表

    Table 3.  Form of geological hazard susceptibility zoning

    易发性
    分区
    面积/
    km2
    占总面积/
    %
    编号面积/
    km2
    占大区/
    面积%
    灾点数灾点密度/
    (个·km−2)
    地质灾害
    高易发区(Ⅰ)
    188.5549.411152.3280.79640.41
    217.939.5190.50
    316.118.5480.94
    42.191.1610.46
    地质灾害
    中易发区(Ⅱ)
    152.2139.8811.300.85
    218.8212.3620.11
    315.039.8710.07
    412.928.49
    518.5112.1620.11
    69.125.99
    744.6629.34
    812.348.1110.08
    911.737.71
    107.785.11
    低易发区(Ⅲ)47.4012.42147.4010010.02
    下载: 导出CSV
  • [1]

    REGMI N R,GIARDINO J R,VITEK J D. Modeling susceptibility to landslides using the weight of evidence approach:western Colorado,USA[J]. Geomorphology,2010,115(1/2):172 − 187. doi: 10.1016/j.geomorph.2009.10.002

    [2]

    DU J,GLADE T,WOLDAI T,et al. Landslide susceptibility assessment based on an incomplete landslide inventory in the Jilong Valley,Tibet,Chinese Himalayas[J]. Engineering Geology,2020,270:105572. doi: 10.1016/j.enggeo.2020.105572

    [3]

    GOYES-PEÑAFIEL P,HERNANDEZ-ROJAS A. Landslide susceptibility index based on the integration of logistic regression and weights of evidence:A case study in Popayan,Colombia[J]. Engineering Geology,2021,280:105958. doi: 10.1016/j.enggeo.2020.105958

    [4]

    BĂLTEANU D,MICU Mihai,JURCHESCU M,et al. National-scale landslide susceptibility map of Romania in a European methodological framework[J]. Geomorphology,2020,371:107432. doi: 10.1016/j.geomorph.2020.107432

    [5]

    SMITH H G,SPIEKERMANN R,BETTS H,et al. Comparing methods of landslide data acquisition and susceptibility modelling:examples from New Zealand[J]. Geomorphology,2021,381:107660. doi: 10.1016/j.geomorph.2021.107660

    [6]

    黄立鑫,郝君明,李旺平,等. 基于RBF神经网络-信息量耦合模型的滑坡易发性评价—以甘肃岷县为例[J]. 中国地质灾害与防治学报,2021,32(6):116 − 126. [HUANG Lixin,HAO Junming,LI Wangping,et al. Landslide susceptibility assessment by the coupling method of RBF neural network and information value:A case study in Min Xian,Gansu Province[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):116 − 126. (in Chinese with English abstract)

    [7]

    廖小平,徐风光,蔡旭东,等. 香丽高速公路边坡地质灾害发育特征与易发性区划[J]. 中国地质灾害与防治学报,2021,32(5):121 − 129. [LIAO Xiaoping,XU Fengguang,CAI Xudong,et al. Development characteristics and susceptibality zoning of slope geological hazards in Xiangli expressway[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):121 − 129. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2021.05-15

    [8]

    罗守敬,王珊珊,付德荃. 北京山区突发性地质灾害易发性评价[J]. 中国地质灾害与防治学报,2021,32(4):126 − 133. [LUO Shoujing,WANG Shanshan,FU Dequan. Assessment on the susceptibility of sudden geological hazards in mountainous areas of Beijing[J]. The Chinese Journal of Geological Hazard and Control,2021,32(4):126 − 133. (in Chinese with English abstract)

    [9]

    吴赛男,田毅. 我国单体滑坡模拟和区域滑坡易发性评价研究进展[J]. 中国地质灾害与防治学报,2019,30(3):113 − 119. [WU Sainan,TIAN Yi. Review on progress of individual landslide simulation and assessment of reginal landslide susceptibility in China[J]. The Chinese Journal of Geological Hazard and Control,2019,30(3):113 − 119. (in Chinese with English abstract)

    [10]

    闫怡秋,杨志华,张绪教,等. 基于加权证据权模型的青藏高原东部巴塘断裂带滑坡易发性评价[J]. 现代地质,2021,35(1):26 − 37. [YAN Yiqiu,YANG Zhihua,ZHANG Xujiao,et al. Landslide susceptibility assessment based on weight-of-evidence modeling of the Batang fault zone,eastern Tibetan Plateau[J]. Geoscience,2021,35(1):26 − 37. (in Chinese with English abstract)

    [11]

    LUSTED L B. An introduction to medical decision making[J]. American Journal of Physical Medicine & Rehabilitation,1970,49(5):322.

    [12]

    SPIEGELHALTER D J,KNILL-JONES R P. Statistical and knowledge-based approaches to clinical decision-support systems,with an application in gastroenterology[J]. Journal of the Royal Statistical Society Series A (General),1984,147(1):35. doi: 10.2307/2981737

    [13]

    BONHAM-CARTER G F, AGTERBERG F P, WRIGHT D F. Weights of evidence modelling: A new approach to mapping mineral potential[R]. Natural Resources Canada/CMSS/Information Management, 1990.

    [14]

    AGTERBERG F P. Combining indicator patterns in weights of evidence modeling for resource evaluation[J]. Nonrenewable Resources,1992,1(1):39 − 50. doi: 10.1007/BF01782111

    [15]

    AGTERBERG F P, BONHARN-CARTER G F. Weights of evidence modeling and weighted logistic regression for mineral potential mapping[M]. Computers in Geology - 25 Years of Progress. 13 − 32: Oxford University Press, 1994.

    [16]

    CARRANZA E,HALE M. Spatial association of mineral occurrences and curvilinear geological features[J]. Mathematical Geology,2002,34:203 − 221. doi: 10.1023/A%3A1014416319335

    [17]

    孙琳,任娜娜,李云安,等. 基于证据权法的公路路基岩溶塌陷危险性评价[J]. 中国地质灾害与防治学报,2019,30(3):94 − 100. [SUN Lin,REN Nana,LI Yunan,et al. Risk assessment on karst collapse of the highway subgrade based on weights of evidence method[J]. The Chinese Journal of Geological Hazard and Control,2019,30(3):94 − 100. (in Chinese with English abstract)

    [18]

    刘璐瑶, 高惠瑛. 基于证据权与Logistic回归模型耦合的滑坡易发性评价[J/OL]. 工程地质学报. https://doi.org/10.13544/j.cnki.jeg.2020-482.

    LIU Luyao, GAO Huiying. Landslide susceptibility assessment based on coupling of woe model and logistic regression model[J/OL]. Journal of Engineering Geology. https://doi.org/10.13544/j.cnki.jeg.2020-482. (in Chinese with English abstract)

    [19]

    CHEN L F,GUO H X,GONG P S,et al. Landslide susceptibility assessment using weights-of-evidence model and cluster analysis along the highways in the Hubei section of the Three Gorges Reservoir Area[J]. Computers & Geosciences,2021,156:104899. doi: 10.1016/j.cageo.2021.104899

    [20]

    ALSABHAN A H,SINGH K,SHARMA A,et al. Landslide susceptibility assessment in the Himalayan range based along Kasauli - Parwanoo Road corridor using weight of evidence,information value,and frequency ratio[J]. Journal of King Saud University - Science,2022,34(2):101759. doi: 10.1016/j.jksus.2021.101759

    [21]

    SAHA A,SAHA S. Comparing the efficiency of weight of evidence,support vector machine and their ensemble approaches in landslide susceptibility modelling:a study on Kurseong region of Darjeeling Himalaya,India[J]. Remote Sensing Applications:Society and Environment,2020,19:100323. doi: 10.1016/j.rsase.2020.100323

    [22]

    黄发明,石雨,欧阳慰平,等. 基于证据权和卡方自动交互检测决策树的滑坡易发性预测[J]. 土木与环境工程学报(中英文),2022,44(5):1 − 15. [HUANG Faming,SHI Yu,OUYANG Weiping,et al. Landslide susceptibility prediction modeling based on weight of evidence and Chi-square automatic interactive detection[J]. Journal of Civil and Environmental Engineering,2022,44(5):1 − 15. (in Chinese with English abstract)

    [23]

    杨华阳,许向宁,杨鸿发. 基于证据权法的九寨沟地震滑坡危险性评价[J]. 中国地质灾害与防治学报,2020,31(3):20 − 29. [YANG Huayang,XU Xiangning,YANG Hongfa. The Jiuzhaigou co-seismic landslide hazard assessment based on weight of evidence method[J]. The Chinese Journal of Geological Hazard and Control,2020,31(3):20 − 29. (in Chinese with English abstract)

    [24]

    云南省地质局第二区测队. 昆明幅G-48-25 1/20万地质调查报告[R]. 昆明: 云南省地质局, 1971

    The Second Regional Survey Bureau. Kunming G-48-25 1/200000 Geological survey report[R]. Kunming: Yunnan Geological Bureau, 1971. (in Chinese with English abstract)

    [25]

    云南省地质局第二区测大队. 武定幅G-48-19 1/20万地质图, 矿产图及其说明书[R]. 昆明: 云南省地质局, 1969

    The Second Regional Survey Bureau. Wuding G-48-19 1/200000 geological map, mineral map and description[R]. Kunming: Yunnan Geological Bureau, 1969. (in Chinese)

    [26]

    BONHAM-CARTER G F. Geographic information systems for geoscientists: Modelling with GIS[M]. Canada: Pergamon, 1994.

    [27]

    CARTER GF B,AGTERBERG F P,WRIGHT D F. Integration of geological datasets for gold exploration in Nova Scotia[J]. photogrammetric Engineering & Remote Sensing,1990,54(11):1585 − 1592.

    [28]

    AGTERBERG F P, BONHAM-CARTER G F, WRIGHT D F. Statistical pattern integration for mineral exploration[M].Computer Applications in Resource Estimation Amsterdam: Elsevier, 1990: 1 − 21.

    [29]

    HOYER A,KUSS O. Meta-analysis of full ROC curves with flexible parametric distributions of diagnostic test values[J]. Research Synthesis Methods,2020,11(2):301 − 313. doi: 10.1002/jrsm.1395

    [30]

    WALKER S P. The ROC curve redefined - optimizing sensitivity (and specificity) to the lived reality of cancer[J]. The New England Journal of Medicine,2019,380(17):1594 − 1595. doi: 10.1056/NEJMp1814951

    [31]

    OMAR L,IVRISSIMTZIS I. Using theoretical ROC curves for analysing machine learning binary classifiers[J]. Pattern Recognition Letters,2019,128:447 − 451. doi: 10.1016/j.patrec.2019.10.004

    [32]

    王高峰, 郭宁, 邓兵, 等. 不同组合模型区域滑坡易发性及精度分析[J]. 西北地质,2021,54(2):259 − 272. [WANG Gaofeng, GUO Ning, DENG Bing, et al. Analysis of landslide susceptibility and accuracy in different combination models[J]. Northwestern Geology,2021,54(2):259 − 272. (in Chinese with English abstract)

  • 加载中

(7)

(3)

计量
  • 文章访问数:  570
  • PDF下载数:  55
  • 施引文献:  0
出版历程
收稿日期:  2022-03-24
修回日期:  2022-05-12
录用日期:  2022-05-13
刊出日期:  2022-10-25

目录