Comparative analyses on susceptibility of cutting slope landslides in southern Jiangxi using different models
-
摘要:
赣南地区滑坡灾害点多、面广、规模小,具有群发性和突发性的特点,90%以上的滑坡是因人工切坡导致的。为研究赣南地区小型削方滑坡对易发性评价模型的适用性,以赣州市于都县银坑镇为例,基于野外地质调查成果,并利用地理探测器,选取坡度、坡体结构、岩组、断层、道路、植被等6个评价指标,分别选用信息量模型、人工神经网络模型、决策树模型和逻辑回归模型开展易发性评价。结果表明:信息量、人工神经网络、决策树和逻辑回归等模型得到的AUC值分别为0.800、0.708、0.672和0.586,信息量模型所得的易发性结果与研究区滑坡实际分布情况较吻合,高易发区和中易发区滑坡占比近80%。信息量模型较其他三个模型,更适合于赣南地区小型削方滑坡易发性评价,评价结果对该地区地质灾害易发性评价模型选取提供了参考与借鉴。
Abstract:There are many landslide disasters in southern Jiangxi, with a wide area and a small scale, and are characterized by mass and suddenness. More than 90% of landslides are caused by artificial slope cutting. In order to study the applicability of the susceptibility evaluation model for cutting slope landslides caused by cutting slopes in southern Jiangxi, taking Yinkeng Town, Yudu County, Ganzhou City as an example, based on the results of field geological surveys, and using GeoDetectors, the slope, the slope structure, rock formation, fault, road, and vegetation, were selected to carry out landslide susceptibility assessment by using the information value model (I), artificial neural network model (ANN), decision tree model (DT) and Logic regression model respectively. The results show that the AUC values obtained from information value model, artificial neural network model, decision tree model and logistic regression model are 0.800, 0.708, 0.672 and 0.586, respectively. The susceptibility results obtained by the information value model are in good agreement with the actual distribution of landslides in the study area. The specific value of the proportion of landslides in high-prone areas and medium-prone areas exceeds 80%. The information model is more suitable for the landslide susceptibility assessment under cutting slope in southern Jiangxi than the other three models. The assessment results provide a reference for the selection of the assessment model for the geohazard susceptibility in this region.
-
Key words:
- cutting slope /
- GeoDetectors /
- information value /
- artificial neural network /
- decision tree /
- logistic regression
-
表 1 地理探测器得到11个指标的q值
Table 1. The normalized weight values of 11 indicators
指标 距道路距离 岩组 坡体
结构坡度 距断层距离 植被
覆盖率坡向 高程变异系数 粗糙度 曲率 地表切割深度 q值 0.2897 0.2767 0.1203 0.1102 0.0807 0.0727 0.0152 0.0122 0.0120 0.0092 0.0011 排序 1 2 3 4 5 6 7 8 9 10 11 表 2 评价指标各自信息量值
Table 2. Each information value of evaluation index
评价指标 评价指标子类 信息量值 坡度/(°) 0~7 −0.439 7~17 0.186 17~26 0.304 26~36 −0.268 >36 0 坡体结构 碎石土质边坡 −0.115 岩质−顺向坡 0.145 岩质−逆向坡 −0.147 岩质−斜向破 0.147 工程地质岩组 多层含砾黏土、粉质黏土 −0.458 较坚硬−坚硬的变质砂岩、变质粉砂岩、
千枚岩等组0.140 坚硬花岗岩组 0.508 较坚硬的波状复成份砾岩、安山岩岩组 2.457 较硬、较软的砾岩、粉砂岩、页岩等组 −0.942 较软弱−较坚硬石英砾岩、
砂岩、粉砂岩、泥岩等组0.888 坚硬石英砾岩、砂砾岩、粉砂岩等组 −1.974 软硬相间的砾岩、粉砂岩夹煤层 −0.060 距断层距离/m <100 0.395 100~200 0.237 200~300 0.461 300~400 −0.093 400~500 −0.078 >500 −0.058 距道路距离/m <50 −0.076 50~100 0.772 100~200 1.076 200~500 1.109 >500 −0.508 植被 高植被覆盖率 −0.412 较高植被覆盖率 −0.168 中植被覆盖率 −0.313 较低植被覆盖率 0.007 低植被覆盖率 −0.206 极低植被覆盖率 0.161 表 3 滑坡点在各个分区所占比例
Table 3. The proportion of disaster points in each partition
易发性
分区灾害点在各个分区所占比例/% I ANN DT LR 非 5.6 6.5 16.5 18.6 低 16.8 16.6 23.4 20.8 中 59.2 48.1 41.1 38.9 高 18.4 28.8 19.0 21.7 -
[1] 郭子正,殷坤龙,黄发明,等. 基于滑坡分类和加权频率比模型的滑坡易发性评价[J]. 岩石力学与工程学报,2019,38(2):287 − 300. [GUO Zizheng,YIN Kunlong,HUANG Faming,et al. Evaluation of landslide susceptibility based on landslide classification and weighted frequency ratio model[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(2):287 − 300. (in Chinese with English abstract)
[2] 周超,殷坤龙,曹颖,等. 基于集成学习与径向基神经网络耦合模型的三峡库区滑坡易发性评价[J]. 地球科学,2020,45(6):1865 − 1876. [ZHOU Chao,YIN Kunlong,CAO Ying,et al. Landslide susceptibility assessment by applying the coupling method of radial basis neural network and adaboost:A case study from the Three Gorges Reservoir area[J]. Earth Science,2020,45(6):1865 − 1876. (in Chinese with English abstract)
[3] CHEN T,ZHU L,NIU R Q,et al. Mapping landslide susceptibility at the Three Gorges Reservoir,China,using gradient boosting decision tree,random forest and information value models[J]. Journal of Mountain Science,2020,17(03):670 − 685. doi: 10.1007/s11629-019-5839-3
[4] 郭天颂,张菊清,韩煜,等. 基于粒子群优化支持向量机的延长县滑坡易发性评价[J]. 地质科技情报,2019,38(3):236 − 243. [GUO Tiansong,ZHANG Juqing,HAN Yu,et al. Evaluation of landslide susceptibility in Yanchang County based on particle swarm optimization-based support vector machine[J]. Geological Science and Technology Information,2019,38(3):236 − 243. (in Chinese with English abstract)
[5] 邱维蓉,吴帮玉,潘学树,等. 几种聚类优化的机器学习方法在灵台县滑坡易发性评价中的应用[J]. 西北地质,2020,53(1):222 − 233. [QIU Weirong,WU Bangyu,PAN Xueshu,et al. Application of several cluster-optimization-based machine learning methods in evaluation of landslide susceptibility in Lingtai County[J]. Northwestern Geology,2020,53(1):222 − 233. (in Chinese with English abstract)
[6] 刘永垚,第宝锋,詹宇,等. 基于随机森林模型的泥石流易发性评价:以汶川地震重灾区为例[J]. 山地学报,2018,36(5):765 − 773. [LIU Yongyao,DI Baofeng,ZHAN Yu,et al. Debris flows susceptibility assessment in Wenchuan earthquake areas based on random forest algorithm model[J]. Mountain Research,2018,36(5):765 − 773. (in Chinese with English abstract)
[7] 戴岚欣,许强,范宣梅,等. 2017年8月8日四川九寨沟地震诱发地质灾害空间分布规律及易发性评价初步研究[J]. 工程地质学报,2017,25(4):1151 − 1164. [DAI Lanxin,XU Qiang,FAN Xuanmei,et al. A preliminary study on spatial distribution patterns of landslides triggered by Jiuzhaigou earthquake in Sichuan on August 8th,2017 and their susceptibility assessment[J]. Journal of Engineering Geology,2017,25(4):1151 − 1164. (in Chinese with English abstract)
[8] 胡凯衡,陈成,李秀珍,等. 地震区降雨作用下泥石流易发性动态评估[J]. 中国地质灾害与防治学报,2018,29(2):1 − 8. [HU Kaiheng,CHEN Cheng,LI Xiuzhen,et al. Dynamic assessment of debris-flow susceptibility under the influence of earthquake and rainfall events[J]. The Chinese Journal of Geological Hazard and Control,2018,29(2):1 − 8. (in Chinese with English abstract)
[9] 冯杭建,周爱国,俞剑君,等. 浙西梅雨滑坡易发性评价模型对比[J]. 地球科学,2016,41(3):403 − 415. [FENG Hangjian,ZHOU Aiguo,YU Jianjun,et al. A comparative study on plum-rain-triggered landslide susceptibility assessment models in West Zhejiang Province[J]. Earth Science,2016,41(3):403 − 415. (in Chinese with English abstract)
[10] 彭珂,彭红霞,梁峰,等. 赣州市地质灾害分布特征及孕灾环境分析[J]. 安全与环境工程,2017,24(1):33 − 39. [PENG Ke,PENG Hongxia,LIANG Feng,et al. Distribution characteristics and development environment of geological disasters in Ganzhou City[J]. Safety and Environmental Engineering,2017,24(1):33 − 39. (in Chinese with English abstract)
[11] 王力,李高,陈勇,等. 赣南地区人工切坡降雨致灾机制现场模型试验[J]. 岩土力学,2021,42(3):846 − 854. [WANG Li,LI Gao,CHEN Yong,et al. Field model test on failure mechanism of artificial cut-slope rainfall in Southern Jiangxi[J]. Rock and Soil Mechanics,2021,42(3):846 − 854. (in Chinese with English abstract)
[12] 刘婷,谭建民,郭飞,等. 人工切坡下滑坡易发性评价中权重修正方法研究—以赣州市沙地镇为例[J]. 自然灾害学报,2021,30(5):217 − 225. [LIU Ting,TAN Jianmin,GUO Fei,et al. Research on the method of weight correction for landslide susceptibility with artificial cutting slope:A case study of Shadi Town,Ganzhou City[J]. Journal of Natural Disasters,2021,30(5):217 − 225. (in Chinese with English abstract)
[13] 黄发明,李金凤,王俊宇,等. 考虑线状环境因子适宜性和不同机器学习模型的滑坡易发性预测建模规律[J]. 地质科技通报,2022,41(2):44 − 59. [HUANG Faming,LI Jinfeng,WANG Junyu,et al. Modelling rules of landslide susceptibility prediction considering the suitability of linear environmental factors and different machine learning models[J]. Bulletin of Geological Science and Technology,2022,41(2):44 − 59. (in Chinese with English abstract)
[14] 王雷,吴君平,赵冰雪,等. 基于GIS和信息量模型的安徽池州地质灾害易发性评价[J]. 中国地质灾害与防治学报,2020,31(3):96 − 103. [WANG Lei,WU Junping,ZHAO Bingxue,et al. Susceptibility assessment of geohazards in Chizhou City of Anhui Province based on GIS and informative model[J]. The Chinese Journal of Geological Hazard and Control,2020,31(3):96 − 103. (in Chinese with English abstract)
[15] 任敬,范宣梅,赵程,等. 贵州省都匀市滑坡易发性评价研究[J]. 水文地质工程地质,2018,45(5):165 − 172. [REN Jing,FAN Xuanmei,ZHAO Cheng,et al. Evaluation of the landslide vulnerability in Duyun of Guizhou Province[J]. Hydrogeology & Engineering Geology,2018,45(5):165 − 172. (in Chinese with English abstract)
[16] 孙长明,马润勇,尚合欣,等. 基于滑坡分类的西宁市滑坡易发性评价[J]. 水文地质工程地质,2020,47(3):173 − 181. [SUN Changming,MA Runyong,SHANG Hexin,et al. Landslide susceptibility assessment in Xining based on landslide classification[J]. Hydrogeology & Engineering Geology,2020,47(3):173 − 181. (in Chinese with English abstract)
[17] 李姗姗,谭光超,柳晓晨,等. 基于加权信息量法的枣阳市地质灾害易发性分区评价研究[J]. 资源环境与工程,2018,32(4):635 − 641. [LI Shanshan,TAN Guangchao,LIU Xiaochen,et al. Geological hazards susceptibility assessment based on weighted information method[J]. Resources Environment & Engineering,2018,32(4):635 − 641. (in Chinese with English abstract)
[18] 樊芷吟,苟晓峰,秦明月,等. 基于信息量模型与Logistic回归模型耦合的地质灾害易发性评价[J]. 工程地质学报,2018,26(2):340 − 347. [FAN Zhiyin,GOU Xiaofeng,QIN Mingyue,et al. Information and logistic regression models based coupling analysis for susceptibility of geological hazards[J]. Journal of Engineering Geology,2018,26(2):340 − 347. (in Chinese with English abstract)
[19] 涂婧,刘长宪,姜超,等. 湖北武汉岩溶塌陷易发性评价[J]. 中国地质灾害与防治学报,2020,31(4):94 − 99. [TU Jing,LIU Changxian,JIANG Chao,et al. Susceptibility assessment of karst collapse in Wuhan City[J]. The Chinese Journal of Geological Hazard and Control,2020,31(4):94 − 99. (in Chinese with English abstract)
[20] 许冲,徐锡伟. 基于GIS与ANN模型的地震滑坡易发性区划[J]. 地质科技情报,2012,31(3):116 − 121. [XU Chong,XU Xiwei. GIS and ANN model for earthquake triggered landslides susceptibility zonation[J]. Geological Science and Technology Information,2012,31(3):116 − 121. (in Chinese with English abstract)
[21] 唐斌. ID3算法在地质灾害易发性评价中的应用—以延安市为例[D]. 西安: 长安大学, 2013
TANG Bin. ID3 Algorithm in geological disaster susceptibility evaluation: Case of the Yan’an[D]. Xi’an: Changan University, 2013. (in Chinese with English abstract)
[22] 杜国梁,杨志华,袁颖,等. 基于逻辑回归–信息量的川藏交通廊道滑坡易发性评价[J]. 水文地质工程地质,2021,48(5):102 − 111. [DU Guoliang,YANG Zhihua,YUAN Ying,et al. Landslide susceptibility mapping in the Sichuan-Tibet traffic corridor using logistic regression-information value method[J]. Hydrogeology & Engineering Geology,2021,48(5):102 − 111. (in Chinese with English abstract)
[23] YANG J T,SONG C,YANG Y,et al. New method for landslide susceptibility mapping supported by spatial logistic regression and GeoDetector:A case study of Duwen Highway Basin,Sichuan Province,China[J]. Geomorphology,2019,324:62 − 71. doi: 10.1016/j.geomorph.2018.09.019
[24] 王劲峰,徐成东. 地理探测器:原理与展望[J]. 地理学报,2017,72(1):116 − 134. [WANG Jinfeng,XU Chengdong. Geodetector:Principle and prospective[J]. Acta Geographica Sinica,2017,72(1):116 − 134. (in Chinese with English abstract) doi: 10.11821/dlxb201701010