中国地质环境监测院
中国地质灾害防治工程行业协会
主办

基于实时地质灾害监测数据的预警预报动态阈值分析方法

薛廉, 唐侨, 郑杰, 陆毅之. 基于实时地质灾害监测数据的预警预报动态阈值分析方法[J]. 中国地质灾害与防治学报, 2023, 34(4): 11-21. doi: 10.16031/j.cnki.issn.1003-8035.202206009
引用本文: 薛廉, 唐侨, 郑杰, 陆毅之. 基于实时地质灾害监测数据的预警预报动态阈值分析方法[J]. 中国地质灾害与防治学报, 2023, 34(4): 11-21. doi: 10.16031/j.cnki.issn.1003-8035.202206009
XUE Lian, TANG Qiao, ZHENG Jie, LU Yizhi. Dynamic threshold analysis method of early warning and forecast based on real-time geo-hazards monitoring data[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(4): 11-21. doi: 10.16031/j.cnki.issn.1003-8035.202206009
Citation: XUE Lian, TANG Qiao, ZHENG Jie, LU Yizhi. Dynamic threshold analysis method of early warning and forecast based on real-time geo-hazards monitoring data[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(4): 11-21. doi: 10.16031/j.cnki.issn.1003-8035.202206009

基于实时地质灾害监测数据的预警预报动态阈值分析方法

  • 基金项目: 中国地质调查局地质调查项目“成渝双城经济圈资源环境承载能力监测评价”(DD20221733)
详细信息
    作者简介: 薛 廉(1983-),女,四川资阳人,高级工程师,主要从事地质信息化、地质灾害预测预报研究。E-mail:852567126@qq.com
    通讯作者: 唐 侨(1986-),男,四川资阳人,硕士研究生,主要从事地质信息化、地质灾害预警预报研究。E-mail:472118028@qq.com
  • 中图分类号: P642

Dynamic threshold analysis method of early warning and forecast based on real-time geo-hazards monitoring data

More Information
    Corresponding author: 唐 侨(1986—),男,四川资阳人,硕士研究生,主要从事地质信息化,地质灾害预警预报研究。E-mail:472118028@qq.com
  • 目前在地质灾害监测领域,监测预警信息的发布主要基于各类监测设备的阈值设定。阈值是根据经验或专家估计设定,不仅对地质灾害不同类型、不同环境缺乏针对性,而且设定后较长时间不变,或根据经验略微浮动,缺少数据样本分析的科学性。另外监测设备容易受到卫星信号等环境因素影响,因此在实际运行中可能会出现误报、漏报的情况。为了解决上述问题,文中提出了一种预警阈值自学习自修正从而进行动态调整的方法,引入了两种可变阈值,并提出了一种基于优先级和门以及半马尔可夫过程 VTAS的性能指标优化新方法。半马尔可夫过程的应用使该方法能够考虑具有非高斯分布的工业测量。此外,文中还提出了一种基于遗传算法的优化设计过程,用于优化参数设置,提高性能指标。通过数值仿真以及与以往研究的比较,说明了该方法的有效性。将该方法在实测点位上进行应用,根据结果可知,相比于使用固定阈值,该方法能有效地减少系统误报、漏报,提高地质灾害预警的准确性,从而更好地保护人民生命财产安全。

  • 加载中
  • 图 1  过程变量测量值的随机离散信号x(t)

    Figure 1. 

    图 2  x(t)的正常、异常、假报警和错过报警部分分类

    Figure 2. 

    图 3  x(t)正常部分和异常部分的分离概率密度函数

    Figure 3. 

    图 4  信号应用固定阈值和死区

    Figure 4. 

    图 5  可变阈值a(x)、死区d(x)、正常q(x)和异常p(x)信号的估计概率密度函数

    Figure 5. 

    图 6  具有可变阈值和死区的生成信号

    Figure 6. 

    图 7  动态故障树计算图解

    Figure 7. 

    图 8  带死区的优先级和门计算图解

    Figure 8. 

    图 9  测量的概率密度函数(威布尔分布)

    Figure 9. 

    图 10  生成的随机数

    Figure 10. 

    图 11  使用具有自适应阈值的EWMA过滤器(alpha=0.5,窗口大小=100)后生成的随机数

    Figure 11. 

    图 12  用自适应阈值(α=20)测量传感器(时间(s)-振动测量x(t) mm/s)

    Figure 12. 

    图 13  传感器在正常和异常情况下的概率密度函数(测量范围-概率)

    Figure 13. 

    图 14  固定预警阈值

    Figure 14. 

    图 15  滑动窗口长度

    Figure 15. 

    图 16  可变预警阈值

    Figure 16. 

    表 1  可变阈值报警系统的结果

    Table 1.  Results of variable threshold alarm system

    方法固定阈值固定阈值和死区可变阈值可变阈值和死区
    指标FAR0.26680.26680.20090.2009
    MAR0.20360.04520.18360.0448
    下载: 导出CSV

    表 2  蒙特卡罗模拟与VTAS方法的比较

    Table 2.  Comparison between Monte Carlo simulation and VTAS

    方法蒙特卡罗模拟VTAS的解
    指标FAR0.1598520.15867
    MAR0.1598560.15867
    下载: 导出CSV

    表 3  所提出的解、蒙特卡罗结果和简单马尔可夫解之间的比较

    Table 3.  Comparison between the proposed solution, Monte Carlo results and simple Markov solutions

    方法VTAS的解蒙特卡罗结果简单马尔可夫解
    指标FAR0.13710.13710.1455
    MAR0.13710.1070
    下载: 导出CSV

    表 4  可变阈值与其他方法性能指标的比较结果

    Table 4.  Comparison results of performance metrics of variable threshold method with other methods

    方法STVTASEWMAVTAS
    (+EWMA filter)
    Evidence-based alarm
    system
    3OMAF3SADT
    指标MAR0.35190.31180.04370.05180.05820.24700.1511
    FAR0.38060.28600.04470.02410.04290.29260.2527
    下载: 导出CSV

    表 5  不同方法性能指标的比较结果

    Table 5.  Comparison results of different methods’performance metrics

    方法固定阈值可变阈值(带死区)固定阈值(带死区)
    指标FAR0.1927830.2895270.228910
    MAR0.4607130.2075690.364654
    下载: 导出CSV

    表 6  用遗传算法优化VTAS

    Table 6.  Optimizing VTAS with genetic algorithm

    遗传算法中损失函数的权重报警系统参数
    α, ω, n, m
    MARFARAAD
    ω3ω2ω1(25.024, 82, 1, 1)0.21090.22821.2674
    1110
    IRAADIRFARIRMAR
    11e−051e−05
    ω3ω2ω1(25.039, 82, 2, 3)0.05560.16812.8742
    1000.10.1
    IRAADIRFARIRMAR
    11e−031e−03
    ω3ω2ω1(25.680, 83, 2, 3)0.05960.16252.8979
    1000.50.1
    IRAADIRFARIRMAR
    11e−031e−03
    下载: 导出CSV

    表 7  预警次数对比

    Table 7.  Comparison of warning times

    方法预警次数
    固定阈值301
    可变阈值(带死区)62
    下载: 导出CSV

    表 8  预警性能指标对比

    Table 8.  Comparison of early warning performance indicators

    方法MARFAR
    固定阈值0.08300.137
    可变阈值(带死区)0.00070.013
    下载: 导出CSV
  • [1]

    IZADI S L, SHAH D S, SHOOK S R, et al. A framework for optimal design of alarm systems[C]//Proceedings of the 7th IFAC SAFEPROCESS, 2009.

    [2]

    NAGHOOSI E, IZADI I, CHEN T W. A study on the relation between alarm deadbands and optimal alarm limits[C]//Proceedings of the 2011 American Control Conference. June 29 - July 1, 2011, San Francisco, CA, USA. IEEE, 2011: 3627 − 3632.

    [3]

    XU J. Performance assessment and design for univariate alarm systems based on FAR,MAR,and AAD[J]. IEEE Transactions on Automation Science and Engineering,2012,9(2):296 − 307. doi: 10.1109/TASE.2011.2176490

    [4]

    NAGHOOSI E,IZADI I,CHEN T. Estimation of alarm chattering[J]. Journal of Process Control,2011,21(9):1243 − 1249. doi: 10.1016/j.jprocont.2011.07.015

    [5]

    YUE C, IZADI I. Tongwen optimal alarm signal processing: Filter design and performance analysis[J]. J. Automation Science and Engineering, 2013, 10(2): 446 − 451.

    [6]

    ADNAN N A,CHENG Y,IZADI I,et al. Study of generalized delay-timers in alarm configuration[J]. Journal of Process Control,2013,23(3):382 − 395. doi: 10.1016/j.jprocont.2012.12.013

    [7]

    ADNAN N A,IZADI I,CHEN T W. On expected detection delays for alarm systems with deadbands and delay-timers[J]. Journal of Process Control,2011,21(9):1318 − 1331. doi: 10.1016/j.jprocont.2011.06.019

    [8]

    YANG Fan, SHAH Sirish L, XIAO Deyun. Correlation analysis of alarm data and alarm limit design for industrial processes[C]//Proceedings of the 2010 American Control Conference. June 30 - July 2, 2010, Baltimore, MD, USA. IEEE, 2010: 5850 − 5855.

    [9]

    SHARMA V, et al. A critical review on the application and problems caused by false alarms[J]. Singapore, 2018, s. n.

    [10]

    AL-DABBAGH A W,HU Wenkai,LAI Shiqi,et al. Toward the advancement of decision support tools for industrial facilities:Addressing operation metrics,visualization plots,and alarm floods[J]. IEEE Transactions on Automation Science and Engineering,2018,15:1883 − 1896. doi: 10.1109/TASE.2018.2827309

    [11]

    QUIÑONES-GRUEIRO M, PRIETO-MORENO A, VERDE C, et al. Data-driven monitoring of multimode continuous processes: A review[J]. Chemometr Intell Lab Syst 2019, 189(1): 56 – 71.

    [12]

    HOLLIFIELD BR, HABIBI E, PINTO J. Alarm management: A comprehensive guide[J]. International Society of Automation (ISA), 2021, s. l.

    [13]

    KONDAVEETI S R,SHAH S L,IZADI I. Application of multivariate statistics for efficient alarm generation[J]. IFAC Proceedings Volumes,2009,42(8):657 − 662. doi: 10.3182/20090630-4-ES-2003.00109

    [14]

    CHENG Y,IZADI I,CHEN T W. Optimal alarm signal processing:filter design and performance analysis[J]. IEEE Transactions on Automation Science and Engineering,2013,10(2):446 − 451. doi: 10.1109/TASE.2012.2233472

    [15]

    YANG H,LI H G. Optimization of process alarm thresholds:A multidimensional kernel density estimation approach[J]. Process Safety Progress,2014,33(3):292 − 298. doi: 10.1002/prs.11658

    [16]

    HAN Liu,GAO Huihui,XU Yuan,et al. Combining FAP,MAP and correlation analysis for multivariate alarm thresholds optimization in industrial process[J]. Journal of Loss Prevention in the Process Industries,2016,40:471 − 478. doi: 10.1016/j.jlp.2016.01.022

    [17]

    XU Xiaobin, LI Shibao, SONG Xiaojing, et al. The optimal design of industrial alarm systems based on evidence theory[J]. Control Eng Pract 2019, 46(1): 142 – 56.

    [18]

    GAO Huihui, LIU Feifei, ZHU Qunxiong. A correlation consistency based multivariate alarm thresholds optimization approach[J]. ISA Transactions, Volume 65, 2016: 37 − 43.

    [19]

    BAHAR-GOGANI M, ASLANSEFAT K, SHOOREHDELI M A. A novel extended adaptive thresholding for industrial alarm systems[C]//2017 Iranian Conference on Electrical Engineering (ICEE). May 2-4, 2017. Tehran, Iran. IEEE, 2017.

  • 加载中

(16)

(8)

计量
  • 文章访问数:  1791
  • PDF下载数:  104
  • 施引文献:  0
出版历程
收稿日期:  2022-06-15
修回日期:  2022-07-15
录用日期:  2022-08-17
刊出日期:  2023-08-25

目录