中国地质环境监测院
中国地质灾害防治工程行业协会
主办

基于XGBoost和云模型的地质灾害易发性评价

张威, 胡舫瑞, 綦巍, 彭琳, 王咏林, 陈枫. 基于XGBoost和云模型的地质灾害易发性评价[J]. 中国地质灾害与防治学报, 2023, 34(6): 136-145. doi: 10.16031/j.cnki.issn.1003-8035.202210041
引用本文: 张威, 胡舫瑞, 綦巍, 彭琳, 王咏林, 陈枫. 基于XGBoost和云模型的地质灾害易发性评价[J]. 中国地质灾害与防治学报, 2023, 34(6): 136-145. doi: 10.16031/j.cnki.issn.1003-8035.202210041
ZHANG Wei, HU Fangrui, QI Wei, PENG Lin, WANG Yonglin, CHEN Feng. Susceptibility assessment of geological hazard based on XGBoost and cloud model[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 136-145. doi: 10.16031/j.cnki.issn.1003-8035.202210041
Citation: ZHANG Wei, HU Fangrui, QI Wei, PENG Lin, WANG Yonglin, CHEN Feng. Susceptibility assessment of geological hazard based on XGBoost and cloud model[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 136-145. doi: 10.16031/j.cnki.issn.1003-8035.202210041

基于XGBoost和云模型的地质灾害易发性评价

详细信息
    作者简介: 张 威(1982-),男,辽宁丹东人,本科,高级工程师,主要从事自然灾害风险方面的研究。E-mail:5869365@qq.com
    通讯作者: 胡舫瑞(1988-),男,辽宁营口人,硕士,工程师,主要从事地质灾害风险评价与管理方面的研究。E-mail:hufrcug@163.com
  • 中图分类号: P642.22

Susceptibility assessment of geological hazard based on XGBoost and cloud model

More Information
  • 传统地质灾害易发性评价中,存在着易发性因子权重选取主观性强、因子分级具有随机性和模糊性等问题。采用单一评价模型只能对地质灾害的易发性进行定性评估,无法定量化评价。针对这一问题,文章基于改进集成算法(XGBoost)和云模型,在辽宁省朝阳市189个灾害隐患点中选择坡度、多年平均降水量、归一化植被指数、高程等12个易发性因子,通过XGBoost分类算法确定了易发性因子权重,拟合准确率为96.5%,达到了较高的精度。在此基础上利用云模型将因子分级的模糊性问题转化为定量问题,建立了朝阳市地质灾害易发性评价指标体系。以朝阳市大东山为评价单元对该评价体系进行验证。结果表明该评价单元的易发程度为高易发,与实际情况吻合,应用文章提出的方法进行地质灾害易发性评价的精度较高。

  • 加载中
  • 图 1  云模型示意图

    Figure 1. 

    图 2  朝阳市地质情况示意图

    Figure 2. 

    图 3  地质灾害易发性因子与地质灾害点关系图

    Figure 3. 

    图 4  易发性因子相关性图

    Figure 4. 

    图 5  易发性因子数据分布图

    Figure 5. 

    图 6  样本与总体ROC曲线及P-R曲线

    Figure 6. 

    图 7  易发性因子权重分数图

    Figure 7. 

    图 8  评价指标云图

    Figure 8. 

    图 9  大东山滑坡正射影像

    Figure 9. 

    图 10  总体评估等级云相似度图

    Figure 10. 

    表 1  影响因子权重表

    Table 1.  Weight table of impact factors

    序号 易发性因子 权重
    1 坡度 0.169
    2 多年平均降水量 0.151
    3 归一化植被指数 0.136
    4 高程 0.133
    5 人口密度 0.122
    6 坡向 0.115
    7 地下水涌水量 0.053
    8 公路距离 0.042
    9 工程地质岩性 0.029
    10 断裂距离 0.028
    11 水系距离 0.017
    12 铁路距离 0.006
    下载: 导出CSV

    表 2  影响因子分级表

    Table 2.  Grading table of impact factors

    序号 易发性因子 分级
    1 坡度 {平台,缓坡,陡坡,悬崖}
    2 多年平均降水量 {好,较好,较差,差}
    3 归一化植被指数 {好,中等,较差,差}
    4 高程 {平原,低丘,高丘,低山}
    5 人口密度 {好,较好,较差,差}
    6 坡向/(°) {45~135,315~45,
    135~225,225~315}
    7 地下水涌水量 {富水性差,富水性较差,
    富水性较好,富水性好}
    8 公路距离 {远,较远,较近,近}
    9 工程地质岩性 {碎屑岩类,花岗杂岩类、碳酸岩类,其他岩浆岩岩类,第四系松散土类、花岗岩类、片麻杂岩类}
    10 断裂距离 {远,较远,较近,近}
    11 水系距离 {远,较远,较近,近}
    12 铁路距离 {远,较远,较近,近}
    下载: 导出CSV

    表 3  大东山滑坡影响因子云模型评价值

    Table 3.  Cloud model evaluation values of impact factors for Dadongshan landslide

    序号 易发性因子 影响因子云模型评价值
    1 坡度 (6.91,1.270,0.1)
    2 多年平均降水量 (6.91,1.270,0.1)
    3 归一化植被指数 (10.00,1.031,0.1)
    4 高程 (10.00,1.031,0.1)
    5 人口密度 (10.00,1.031,0.1)
    6 坡向 (10.00,1.031,0.1)
    7 地下水涌水量 (10.00,1.031,0.1)
    8 公路距离 (3.09,1.270,0.1)
    9 工程地质岩性 (10.00,1.031,0.1)
    10 断裂距离 (10.00,1.031,0.1)
    11 水系距离 (3.09,1.270,0.1)
    12 铁路距离 (3.09,1.270,0.1)
    下载: 导出CSV

    表 4  总体评估等级云相似度表

    Table 4.  Cloud similarity table of overall evaluation grades

    云相似度高易发中易发低易发不易发
    大东山滑坡0.99900.99700.96600.1319
    下载: 导出CSV
  • [1]

    中华人民共和国自然资源部.2021年全国地质灾害灾情及2022年地质灾害趋势预测[EB/OL]. (2022-01-13)[2022-09-13]. https://www.mnr.gov.cn/dt/ywbb/202201/t20220113_2717375.html. [Ministry of Natural Resources of the People’s Republic of China. National geological disaster situation in 2021 and geological disaster trend forecast in 2022[EB/OL]. (2022-01-13)[2022-09-13]. https://www.mnr.gov.cn/dt/ywbb/202201/t20220113_2717375.html. (in Chinese)

    Ministry of Natural Resources of the People’s Republic of China. National geological disaster situation in 2021 and geological disaster trend forecast in 2022[EB/OL]. (2022-01-13)[2022-09-13]. https://www.mnr.gov.cn/dt/ywbb/202201/t20220113_2717375.html. (in Chinese)

    [2]

    牛瑞卿,彭令,叶润青,等. 基于粗糙集的支持向量机滑坡易发性评价[J]. 吉林大学学报(地球科学版),2012,42(2):430 − 439. [NIU Ruiqing,PENG Ling,YE Runqing,et al. Landslide susceptibility assessment based on rough sets and support vector machine[J]. Journal of Jilin University (Earth Science Edition),2012,42(2):430 − 439. (in Chinese with English abstract)

    NIU Ruiqing, PENG Ling, YE Runqing, et al. Landslide susceptibility assessment based on rough sets and support vector machine[J]. Journal of Jilin University (Earth Science Edition), 2012, 422): 430439. (in Chinese with English abstract)

    [3]

    MOHAMMADY M,POURGHASEMI H R,PRADHAN B. Landslide susceptibility mapping at Golestan Province,Iran:A comparison between frequency ratio,dempster-shafer,and weights-of-evidence models[J]. Journal of Asian Earth Sciences,2012,61:221 − 236. doi: 10.1016/j.jseaes.2012.10.005

    [4]

    易靖松,王峰,程英建,等. 高山峡谷区地质灾害危险性评价——以四川省阿坝县为例[J]. 中国地质灾害与防治学报,2022,33(3):134 − 142. [YI Jingsong,WANG Feng,CHENG Yingjian,et al. Study on the risk assessment of geological disasters in alpine valley area:A case study in Aba County,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):134 − 142. (in Chinese with English abstract)

    YI Jingsong, WANG Feng, CHENG Yingjian, et al. Study on the risk assessment of geological disasters in alpine valley area: A case study in Aba County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 333): 134142. (in Chinese with English abstract)

    [5]

    黄艳婷,郭永刚. 考虑降雨敏感度的泥石流危险性评价——以藏东南地区为例[J]. 中国地质灾害与防治学报,2023,34(1):129 − 138. [HUANG Yanting,GUO Yonggang. Debris flow risk assessment considering rainfall sensitivity:A case study of southeast Tibet[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):129 − 138. (in Chinese with English abstract)

    HUANG Yanting, GUO Yonggang. Debris flow risk assessment considering rainfall sensitivity: A case study of southeast Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2023, 341): 129138. (in Chinese with English abstract)

    [6]

    许冲,戴福初,徐素宁,等. 基于逻辑回归模型的汶川地震滑坡危险性评价与检验[J]. 水文地质工程地质,2013,40(3):98 − 104. [XU Chong,DAI Fuchu,XU Suning,et al. Application of logistic regression model on the Wenchuan earthquake triggered landslide hazard mapping and its validation[J]. Hydrogeology & Engineering Geology,2013,40(3):98 − 104. (in Chinese with English abstract)

    XU Chong, DAI Fuchu, XU Suning, et al. Application of logistic regression model on the Wenchuan earthquake triggered landslide hazard mapping and its validation[J]. Hydrogeology & Engineering Geology, 2013, 403): 98104. (in Chinese with English abstract)

    [7]

    陈水满,赵辉龙,许震,等. 基于人工神经网络模型的福建南平市滑坡危险性评价[J]. 中国地质灾害与防治学报,2022,33(2):133 − 140. [CHEN Shuiman,ZHAO Huilong,XU Zhen,et al. Landslide risk assessment in Nanping City based on artificial neural networks model[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):133 − 140. (in Chinese with English abstract)

    CHEN Shuiman, ZHAO Huilong, XU Zhen, et al. Landslide risk assessment in Nanping City based on artificial neural networks model[J]. The Chinese Journal of Geological Hazard and Control, 2022, 332): 133140. (in Chinese with English abstract)

    [8]

    HONG Haoyuan,LIU Junzhi,BUI D T,et al. Landslide susceptibility mapping using J48 Decision Tree with AdaBoost,Bagging and Rotation Forest ensembles in the Guangchang area (China)[J]. CATENA,2018,163:399 − 413. doi: 10.1016/j.catena.2018.01.005

    [9]

    张福浩,朱月月,赵习枝,等. 地理因子支持下的滑坡隐患点空间分布特征及识别研究[J]. 武汉大学学报(信息科学版),2020,45(8):1233 − 1244. [ZHANG Fuhao,ZHU Yueyue,ZHAO Xizhi,et al. Spatial distribution and identification of hidden danger points of landslides based on geographical factors[J]. Geomatics and Information Science of Wuhan University,2020,45(8):1233 − 1244. (in Chinese with English abstract)

    ZHANG Fuhao, ZHU Yueyue, ZHAO Xizhi, et al. Spatial distribution and identification of hidden danger points of landslides based on geographical factors[J]. Geomatics and Information Science of Wuhan University, 2020, 458): 12331244. (in Chinese with English abstract)

    [10]

    赵楠,卢毅敏. 基于XGBoost算法的近地面臭氧浓度遥感估算[J]. 环境科学学报,2022,42(5):95 − 108. [ZHAO Nan,LU Yimin. Remote-sensing estimation of near-surface ozone concentration based on XGBoost[J]. Acta Scientiae Circumstantiae,2022,42(5):95 − 108. (in Chinese with English abstract)

    ZHAO Nan, LU Yimin. Remote-sensing estimation of near-surface ozone concentration based on XGBoost[J]. Acta Scientiae Circumstantiae, 2022, 425): 95108. (in Chinese with English abstract)

    [11]

    孙德亮. 基于机器学习的滑坡易发性区划与降雨诱发滑坡预报预警研究[D]. 上海:华东师范大学,2019. [SUN Deliang. Study on landslide susceptibility zoning and rainfall-induced landslide prediction and early warning based on machine learning[D]. Shanghai:East China Normal University,2019. (in Chinese with English abstract)

    SUN Deliang. Study on landslide susceptibility zoning and rainfall-induced landslide prediction and early warning based on machine learning[D]. Shanghai: East China Normal University, 2019. (in Chinese with English abstract)

    [12]

    赵晓东,徐振涛,刘福,等. 基于极端梯度提升算法的滑坡易发性评价模型[J]. 科学技术与工程,2022,22(23):10347 − 10354. [ZHAO Xiaodong,XU Zhentao,LIU Fu,et al. Evaluation model of landslide susceptibility based on extreme gradient lifting algorithm[J]. Science Technology and Engineering,2022,22(23):10347 − 10354. (in Chinese with English abstract)

    ZHAO Xiaodong, XU Zhentao, LIU Fu, et al. Evaluation model of landslide susceptibility based on extreme gradient lifting algorithm[J]. Science Technology and Engineering, 2022, 2223): 1034710354. (in Chinese with English abstract)

    [13]

    李丽秋,许成燕,王晓丽,等. 基于社区大数据的骨关节炎患病风险XGboost预测模型研究[J]. 中华全科医学,2022,20(12):2080 − 2083. [LI Liqiu,XU Chengyan,WANG Xiaoli,et al. Study on XGboost prediction model of osteoarthritis risk based on community big data[J]. Chinese Journal of General Practice,2022,20(12):2080 − 2083. (in Chinese)

    LI Liqiu, XU Chengyan, WANG Xiaoli, et al. Study on XGboost prediction model of osteoarthritis risk based on community big data[J]. Chinese Journal of General Practice, 2022, 2012): 20802083. (in Chinese)

    [14]

    钱宇,何益丰,谢斌鑫,等. 基于特征工程的XGboost风速短期预测[J]. 武汉大学学报(工学版),2022,55(10):1057 − 1064. [QIAN Yu,HE Yifeng,XIE Binxin,et al. Short-term forecast of XGboost wind speed based on feature engineering[J]. Engineering Journal of Wuhan University,2022,55(10):1057 − 1064. (in Chinese with English abstract)

    QIAN Yu, HE Yifeng, XIE Binxin, et al. Short-term forecast of XGboost wind speed based on feature engineering[J]. Engineering Journal of Wuhan University, 2022, 5510): 10571064. (in Chinese with English abstract)

    [15]

    李德毅,刘常昱. 论正态云模型的普适性[J]. 中国工程科学,2004,6(8):28 − 34. [LI Deyi,LIU Changyu. Study on the universality of the normal cloud model[J]. Engineering Science,2004,6(8):28 − 34. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-1742.2004.08.006

    LI Deyi, LIU Changyu. Study on the universality of the normal cloud model[J]. Engineering Science, 2004, 68): 2834. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-1742.2004.08.006

    [16]

    朱文举,平建华,侯俊山,等. 安阳市地下水源热泵系统建设水资源管理区划研究[J]. 水文地质工程地质,2022,49(1):200 − 208. [ZHU Wenju,PING Jianhua,HOU Junshan,et al. A study of the water resources management and division of the groundwater heat pump system construction in Anyang[J]. Hydrogeology & Engineering Geology,2022,49(1):200 − 208. (in Chinese with English abstract)

    ZHU Wenju, PING Jianhua, HOU Junshan, et al. A study of the water resources management and division of the groundwater heat pump system construction in Anyang[J]. Hydrogeology & Engineering Geology, 2022, 491): 200208. (in Chinese with English abstract)

    [17]

    阮永芬,张虔,乔文件,等. 基于C-V-T模型的盾构穿越既有桥梁施工风险评估[J]. 岩土力学,2023,44(2):552 − 562. [RUAN Yongfen,ZHANG Qian,QIAO Wenjian,et al. Construction risk assessment of shield crossing existing bridge based on C-V-T model[J]. Rock and Soil Mechanics,2023,44(2):552 − 562. (in Chinese with English abstract)

    RUAN Yongfen, ZHANG Qian, QIAO Wenjian, et al. Construction risk assessment of shield crossing existing bridge based on C-V-T model[J]. Rock and Soil Mechanics, 2023, 442): 552562. (in Chinese with English abstract)

    [18]

    何乐平,罗舒月,胡启军,等. 基于理想点-可拓云模型的隧道围岩稳定性评价[J]. 中国地质灾害与防治学报,2021,32(2):126 − 134. [HE Leping,LUO Shuyue,HU Qijun,et al. Stability evaluation of tunnel surrounding rock based on ideal point-extension cloud model[J]. The Chinese Journal of Geological Hazard and Control,2021,32(2):126 − 134. (in Chinese with English abstract)

    HE Leping, LUO Shuyue, HU Qijun, et al. Stability evaluation of tunnel surrounding rock based on ideal point-extension cloud model[J]. The Chinese Journal of Geological Hazard and Control, 2021, 322): 126134. (in Chinese with English abstract)

    [19]

    陈忠源,戴自航. 基于指标变权重复合云模型的岩质边坡稳定性评价初探[J]. 中国地质灾害与防治学报,2021,32(6):9 − 17. [CHEN Zhongyuan,DAI Zihang. A preliminary study on evaluation of rock slope stability based on index variable weight compound cloud model[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):9 − 17. (in Chinese with English abstract)

    CHEN Zhongyuan, DAI Zihang. A preliminary study on evaluation of rock slope stability based on index variable weight compound cloud model[J]. The Chinese Journal of Geological Hazard and Control, 2021, 326): 917. (in Chinese with English abstract)

    [20]

    CHEN Tianqi,GUESTRIN C. XGBoost:A scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. August 13 – 17,2016,San Francisco,California,USA. New York:ACM,2016:785 – 794.

    [21]

    刘桂花,宋承祥,刘弘. 云发生器的软件实现[J]. 计算机应用研究,2007,24(1):46 − 48. [LIU Guihua,SONG Chengxiang,LIU Hong. Software implementation of cloud generators[J]. Application Research of Computers,2007,24(1):46 − 48. (in Chinese with English abstract)

    LIU Guihua, SONG Chengxiang, LIU Hong. Software implementation of cloud generators[J]. Application Research of Computers, 2007, 241): 4648. (in Chinese with English abstract)

    [22]

    刘常昱,冯芒,戴晓军,等. 基于云X信息的逆向云新算法[J]. 系统仿真学报,2004,16(11):2417 − 2420. [LIU Changyu,FENG Mang,DAI Xiaojun,et al. A new algorithm of backward cloud[J]. Acta Simulata Systematica Sinica,2004,16(11):2417 − 2420. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-731X.2004.11.013

    LIU Changyu, FENG Mang, DAI Xiaojun, et al. A new algorithm of backward cloud[J]. Acta Simulata Systematica Sinica, 2004, 1611): 24172420. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-731X.2004.11.013

    [23]

    BANDROWSKI J,HEHLMANN J,MERTA H,et al. Studies of sedimentation in settlers with packing[J]. Chemical Engineering and Processing:Process Intensification,1997,36(3):219 − 229. doi: 10.1016/S0255-2701(96)04190-6

    [24]

    黄琼桃,刘瑞敏. 云模型的相似性度量综述[J]. 数据通信,2019(6):43 − 49. [HUANG Qiongtao,LIU Ruimin. A survey of similarity measurement of cloud models[J]. Data Communications,2019(6):43 − 49. (in Chinese with English abstract)

    HUANG Qiongtao, LIU Ruimin. A survey of similarity measurement of cloud models[J]. Data Communications, 20196): 4349. (in Chinese with English abstract)

    [25]

    DAS I,STEIN A,KERLE N,et al. Landslide susceptibility mapping along road corridors in the Indian Himalayas using Bayesian logistic regression models[J]. Geomorphology,2012,179:116 − 125. doi: 10.1016/j.geomorph.2012.08.004

    [26]

    李长春,朱亚强,吴京,等. 基于组合赋权法—云模型的甘肃省水安全时空变化分析[J]. 水电能源科学,2023,41(2):23 − 26. [LI Changchun,ZHU Yaqiang,WU Jing,et al. Spatial and temporal change analysis of water security in Gansu Province based on combined weighting method-cloud model[J]. Water Resources and Power,2023,41(2):23 − 26. (in Chinese with English abstract)

    LI Changchun, ZHU Yaqiang, WU Jing, et al. Spatial and temporal change analysis of water security in Gansu Province based on combined weighting method-cloud model[J]. Water Resources and Power, 2023, 412): 2326. (in Chinese with English abstract)

  • 加载中

(10)

(4)

计量
  • 文章访问数:  957
  • PDF下载数:  39
  • 施引文献:  0
出版历程
收稿日期:  2022-09-25
修回日期:  2023-07-17
录用日期:  2023-08-23
刊出日期:  2023-12-25

目录