Precision calibration and suitability analysis of piezoelectric rain gauges for complex scenarios in geological hazard monitoring
-
摘要:
降雨尤其是局地集中强降雨是诱发滑坡、泥石流等突发地质灾害的主要因素之一。据中国历史灾情统计,局地短时集中强降雨是泥石流的最主要诱发因素,同时降雨诱发型滑坡数量也约占滑坡总数的70%。目前,中国南方的春汛、梅汛提前和北方的秋汛延后,造成地质灾害数量增加、防范区域扩大、防御时段延长。因此开展雨量监测对滑坡、泥石流预警预报具有十分重要的意义。受野外监测场地地形地貌、植被和局地小气候等影响,雨量监测设备的精度、灵敏性、稳定性以及安装位置的科学性是精准预警预报的前提。文章基于翻斗式和压电式两种类型雨量计测定原理、技术参数、安装方法和运维方式的对比,开展室内模拟降雨环境和野外复杂场景试验,进行压电式雨量计精度测定及适宜性分析。结果表明:压电式雨量计误差范围在4%以内。在野外地质灾害监测复杂场景下,压电式雨量计无论是量程大小、测量精度,还是安装方式和后期维护,均较翻斗式雨量计更为适宜。
Abstract:Rainfall, especially local concentrated heavy rainfall, is one of the major factors triggering sudden geological hazards such as landslides and debris flow. According to historical disaster statistics in China, locally short-term concentrated heavy rainfall is the primary triggering factor for debris flows, accounting for approximately 70% of the total number of landslides. Recent alterations in seasonal rainfall patterns, with accelerated spring floods and plum rain in southern China, as well as delayed autumn rain in the northern regions, have led to an increase in geological disasters, expanded risk-prone areas, and prolonged risk management periods. Therefore, conducting rainfall monitoring is of great significance for landslides and debris flow early warning and prediction. To ensure precise early warnings and predictions, the accuracy, sensitivity, stability, and scientifically grounded installation of rainfall monitoring equipment are prerequisites. This study, comparing two types of rain gauges-- tipping bucket and piezoelectric—in terms of measurement principles, technical specifications, installation methods, and operational maintenance, conducted both indoor simulated rainfall experiments and field tests within complex scenes. The results reveal that the piezoelectric rain gauge maintains an error range within 4%. These findings highlight that in the context of complex geological hazard monitoring scenarios, the piezoelectric rain gauge proves more suitable than the tipping bucket rain gauge, regardless of measurement range, accuracy, installation, or post-installation maintenance considerations
-
Key words:
- geological hazard /
- tipping bucket /
- piezoelectric ; rain gauge /
- accuracy measurement /
- error analysis
-
表 1 压电式雨量计和翻斗式雨量计指标对比
Table 1. Comparison of indicators between piezoelectric rain gauges and tipping bucket rain gauges
序号 雨量计类型
比较项目压电式雨量计 翻斗式雨量计 1 技术参数 降雨量:测量范围0~8 mm/min;
分辨率:0.01 mm;
精度:±4%(日累计降雨量);
测量降雨时长范围:监测到降雨后,
以10 s步进累计计算时长。降雨量:测量范围0~4 mm/min;
分辨率0.1 mm;
精度:±4%(日累计降雨量);
测量范围:根据配置的数据采集器确定雨量累计计算时长,
步进时长不统一。2 安装方式 安装准备:即到即装,无需预制基座;
便携性:一体化整机,组件数量少、材质轻、质量小;
拆除、移位操作简便;
水平校正:电子自动校正;
安装阶段数据校准:出厂配置,无需校准;
安装用时:15 min。安装准备:预制水泥基座(约重0.3 t);
便携性:由感应器和记录器构成,组件数量多,体积大,
质量大。废弃、拆除、移位费时费力;
水平校正:人工现场调整;
安装阶段数据校准:人工现场校准;
安装用时:3 d。3 运维方式 清洁清理:承雨面板采用弧面设计;特氟龙抗污防黏涂层;
不堵不黏、降雨过程即清洁过程;
水平校正:隐患点随机出现倾斜,电子自动校正;
运维阶段数据校准:无机械老化、无需校准。清洁清理:定期现场清理下水过滤网;
秋、冬季适当提高维护频次;
水平校正:隐患点随机出现倾斜,需人工现场校正;
运维阶段数据校准:易出现翻斗轴承进灰、翻转不灵敏等
机械老化现象,导致采集数据偏小,需定期人工现场校准。表 2 测试点1数据
Table 2. Test point 1
降雨
场次量筒1实测
/mm监测设备 上报数据1
/mm上报数据2
/mm上报数据3
/mm上报数据4
/mm上报数据5
/mm累计雨量数据与
量筒实测误差上报数据离散系数
(标准差/平均值)/%1 24 压电式雨量计1 5.01 4.78 4.87 4.85 4.90 24.40 (+1.7%) 1.6 翻斗式雨量计1 6.30 6.40 6.40 6.50 6.40 32 (+33.3%) 1.0 2 28 压电雨量计1 5.53 5.78 5.53 5.53 5.71 28.08 (+0.2%) 1.9 翻斗式雨量计1 6.20 6.20 6.40 6.20 6.20 31.2 (+11.4%) 1.3 表 3 测试点2数据
Table 3. Test point 2
降雨
场次量筒2实测
/mm监测设备 上报数据1
/mm上报数据2
/mm上报数据3
/mm上报数据4
/mm上报数据5
/mm累计雨量数据与
量筒实测误差上报数据离散系数
(标准差/平均值)/%1 27 压电雨量计2 5.52 5.70 5.65 5.51 5.70 28.08(+3.9%) 1.5 翻斗式雨量计2 5.30 5.30 5.00 5.00 5.00 26.70(−1.1%) 6.3 2 27 压电雨量计2 5.65 5.46 5.40 5.32 5.35. 27.18(+0.6%) 2.2 翻斗式雨量计2 6.20 6.30 6.20 6.00 6.00 30.07(+11.1%) 2.0 表 4 采集记录表
Table 4. Data collection record table
序号 采集时间 量筒雨量
/mm压电式雨量
计雨量/mm相对
误差/%1 6月5日14:00—6月15日9:00 225 230.48 2.4 2 6月28日21:00—6月29日11:00 178 178.65 0.4 -
[1] 汪美华, 赵慧, 倪天翔, 等. 近30年滑坡研究文献图谱可视化分析[J]. 中国地质灾害与防治学报,2023,34(4):75 − 85. [WANG Meihua, ZHAO Hui, NI Tianxiang, et al. Visualization analysis of research literature map on landslides in the past 30 years[J]. The Chinese Journal of Geological Hazard and Control,2023,34(4):75 − 85. (in Chinese with English abstract)
[WANG Meihua, ZHAO Hui, NI Tianxiang, et al. Visualization analysis of research literature map on landslides in the past 30 years[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(4): 75-85.(in Chinese with English abstract)]
[2] 马红娜, 刘江, 冯卫, 等. 地质灾害风险评估在国土空间规划中的应用—以陕北榆林高西沟为例[J]. 西北地质,2023,56(3):223 − 231. [MA Hongna, LIU Jiang, FENG Wei, et al. Application of geological hazard risk assessment in territorial space planning: A case study of Gaoxigou Village in Yulin City of northern Shaanxi Province[J]. Northwestern Geology,2023,56(3):223 − 231. (in Chinese with English abstract)
[MA Hongna, LIU Jiang, FENG Wei, et al. Application of geological hazard risk assessment in territorial space planning: a case study of Gaoxigou Village in Yulin city of northern Shaanxi Province[J]. Northwestern Geology, 2023, 56(3): 223-231.(in Chinese with English abstract)]
[3] 王涛, 刘甲美, 栗泽桐, 等. 中国地震滑坡危险性评估及其对国土空间规划的影响研究[J]. 中国地质,2021,48(1):21 − 39. [WANG Tao, LIU Jiamei, LI Zetong, et al. Seismic landslide hazard assessment of China and its impact on national territory spatial planning[J]. Geology in China,2021,48(1):21 − 39. (in Chinese with English abstract)
[WANG Tao, LIU Jiamei, LI Zetong, et al. Seismic landslide hazard assessment of China and its impact on national territory spatial planning[J]. Geology in China, 2021, 48(1): 21-39.(in Chinese with English abstract)]
[4] 唐军峰, 唐雪梅, 周基, 等. 滑坡堆积体变形失稳机制—以贵州剑河县东岭信滑坡为例[J]. 吉林大学学报(地球科学版),2022,52(2):503 − 516. [TANG Junfeng, TANG Xuemei, ZHOU Ji, et al. Deformation and instability mechanism of landslide accumulation: A case study of Donglingxin landslide accumulation in Jianhe County, Guizhou Province[J]. Journal of Jilin University (Earth Science Edition),2022,52(2):503 − 516. (in Chinese with English abstract)
[TANG Junfeng, TANG Xuemei, ZHOU Ji, et al. Deformation and instability mechanism of landslide accumulation: a case study of donglingxin landslide accumulation in Jianhe County, Guizhou Province[J]. Journal of Jilin University (Earth Science Edition), 2022, 52(2): 503-516.(in Chinese with English abstract)]
[5] 栗倩倩, 王伟, 黄亮, 等. 台风暴雨型滑坡滞后效应分析—以浙江青田县“利奇马”台风为例[J]. 中国地质灾害与防治学报,2022,33(6):10 − 19. [LI Qianqian, WANG Wei, HUANG Liang, et al. Analysis on lag effect of typhoon-induced landslide: A case study of typhoon “Lekima” in Qingtian County, Zhejiang Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(6):10 − 19. (in Chinese with English abstract)
[LI Qianqian, WANG Wei, HUANG Liang, et al. Analysis on lag effect of typhoon-induced landslide: a case study of typhoon “Lekima” in Qingtian County, Zhejiang Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 10-19.(in Chinese with English abstract)]
[6] 方然可,刘艳辉,苏永超,等. 基于逻辑回归的四川青川县区域滑坡灾害预警模型[J]. 水文地质工程地质,2021,48(1):181 − 187. [FANG Ranke,LIU Yanhui,SU Yongchao,et al. A early warning model of regional landslide in Qingchuan County,Sichuan Province based on logistic regression[J]. Hydrogeology & Engineering Geology,2021,48(1):181 − 187. (in Chinese with English abstract)
FANG Ranke, LIU Yanhui, SU Yongchao, et al. A early warning model of regional landslide in Qingchuan County, Sichuan Province based on logistic regression[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 181-187. (in Chinese with English abstract)
[7] 宋昭富, 张勇, 佘涛, 等. 基于易发性分区的区域滑坡降雨预警阈值确定—以云南龙陵县为例[J]. 中国地质灾害与防治学报,2023,34(4):22 − 29. [SONG Zhaofu, ZHANG Yong, SHE Tao, et al. Determination of regional landslide rainfall warning threshold based on susceptibility zoning: A case study in Longling County of Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(4):22 − 29. (in Chinese with English abstract)
[SONG Zhaofu, ZHANG Yong, SHE Tao, et al. Determination of regional landslide rainfall warning threshold based on susceptibility zoning: a case study in Longling County of Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(4): 22-29.(in Chinese with English abstract)]
[8] 陈春利, 方志伟. 福建省地质灾害气象预警有效降雨模型研究[J]. 地质力学学报,2023,29(1):99 − 110. [CHEN Chunli, FANG Zhiwei. Research on an effective rainfall model for geological disaster early warning in Fujian Province, China[J]. Journal of Geomechanics,2023,29(1):99 − 110. (in Chinese with English abstract)
[CHEN Chunli, FANG Zhiwei. Research on an effective rainfall model for geological disaster early warning in Fujian Province, China[J]. Journal of Geomechanics, 2023, 29(1): 99-110.(in Chinese with English abstract)]
[9] 张像源. 基于GIS和GDAL的地质灾害汛期风险预警产品信息自动化生成算法的构建与实现[J]. 中国地质灾害与防治学报,2022,33(5):76 − 82. [ZHANG Xiangyuan. Construction and implementation of an automatic algorithm for generating information of geological disaster floor risk warning products based on GIS and GDAL[J]. The Chinese Journal of Geological Hazard and Control,2022,33(5):76 − 82. (in Chinese with English abstract)
[ZHANG Xiangyuan. Construction and implementation of an automatic algorithm for generating information of geological disaster floor risk warning products based on GIS and GDAL[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 76-82.(in Chinese with English abstract)]
[10] 马娟,赵文祎,齐干,等. 基于普适型监测的多参数预警研究—以三峡库区卡门子湾滑坡为例[J]. 西北地质,2021,54(3):259 − 269. [MA Juan,ZHAO Wenyi,QI Gan,et al. Study on the multi-parameter early warning based on universal equipment:A case of Kamenziwan landslide in the Three Gorges Reservoir[J]. Northwestern Geology,2021,54(3):259 − 269. (in Chinese with English abstract)
MA Juan, ZHAO Wenyi, QI Gan, et al. Study on the multi-parameter early warning based on universal equipment: a case of kamenziwan landslide in the Three Gorges Reservoir[J]. Northwestern Geology, 2021, 54(3): 259-269. (in Chinese with English abstract)
[11] 谭川东,柏文文. 翻斗式雨量计精度标定及其结果分析[J]. 甘肃水利水电技术,2020,56(6):5 − 7. [TAN Chuandong,BAI Wenwen. Precision calibration of tipping bucket rain gauge and its result analysis[J]. Gansu Water Resources and Hydropower Technology,2020,56(6):5 − 7. (in Chinese)
TAN Chuandong, BAI Wenwen. Precision calibration of tipping bucket rain gauge and its result analysis[J]. Gansu Water Resources and Hydropower Technology, 2020, 56(6): 5-7. (in Chinese)
[12] 李耀宁,陶立新,黄湘. 不同雨量计测值误差分析[J]. 气象科技,2011,39(5):670 − 672. [LI Yaoning,TAO Lixin,HUANG Xiang. Causal analysis of measurement differences between various raingauges[J]. Meteorological Science and Technology,2011,39(5):670 − 672. (in Chinese with English abstract)
LI Yaoning, TAO Lixin, HUANG Xiang. Causal analysis of measurement differences between various raingauges[J]. Meteorological Science and Technology, 2011, 39(5): 670-672. (in Chinese with English abstract)
[13] 蔺潇. 基于压电技术的降雨测量方法研究[D]. 北京: 北京交通大学, 2019
LIN Xiao. Research on rainfall measurement method based on piezoelectric technology[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese with English abstract)
[14] 张向阳. 刘家洼雨量站人工观测降雨量与固态雨量计观测降雨量对比分析报告[J]. 水电水利, 2019(6): 33 − 35
ZHANG Xiangyang. Comparison of rainfall observed by man and solid rain gauge at Liujiawa rainfall station[J]. Hydropower and Water, 2019(6)33 − 35. (in Chinese)
[15] 任芝花,李伟,雷勇,等. 降水测量对比试验及其主要结果[J]. 气象,2007,33(10):96 − 101. [REN Zhihua,LI Wei,LEI Yong,et al. A comparison experiment of solid precipitation measurement and its primary results[J]. Meteorological Monthly,2007,33(10):96 − 101. (in Chinese with English abstract)
REN Zhihua, LI Wei, LEI Yong, et al. A comparison experiment of solid precipitation measurement and its primary results[J]. Meteorological Monthly, 2007, 33(10): 96-101. (in Chinese with English abstract)
[16] 李兴宝,侯方. 基于自动气象站与自动雨量站的气象服务、监视及自动报警系统[J]. 气象科技,2009,37(1):110 − 113. [LI Xingbao,HOU Fang. Meteorological service,monitoring and auto-alarming system based on AWS and automatic precipitation station data[J]. Meteorological Science and Technology,2009,37(1):110 − 113. (in Chinese with English abstract)
LI Xingbao, HOU Fang. Meteorological service, monitoring and auto-alarming system based on AWS and automatic precipitation station data[J]. Meteorological Science and Technology, 2009, 37(1): 110-113. (in Chinese with English abstract)
[17] 张强,涂满红,马舒庆,等. 自动雨量站降雨资料质量评估方法研究[J]. 应用气象学报,2007,18(3):365 − 372. [ZHANG Qiang,TU Manhong,MA Shuqing,et al. Quality assessment of the observational data of automatic precipitation stations in China[J]. Journal of Applied Meteorological Science,2007,18(3):365 − 372. (in Chinese with English abstract)
ZHANG Qiang, TU Manhong, MA Shuqing, et al. Quality assessment of the observational data of automatic precipitation stations in China[J]. Journal of Applied Meteorological Science, 2007, 18(3): 365-372. (in Chinese with English abstract)
[18] 王自英,王仔刚,赵梅珠. 自动雨量站资料在地质灾害监测中的应用[J]. 气象科技,2009,37(5):627 − 631. [WANG Ziying,WANG Zigang,ZHAO Meizhu. Application of automatic rainfall station data in geological disaster monitoring[J]. Meteorological Science and Technology,2009,37(5):627 − 631. (in Chinese with English abstract)
WANG Ziying, WANG Zigang, ZHAO Meizhu. Application of automatic rainfall station data in geological disaster monitoring[J]. Meteorological Science and Technology, 2009, 37(5): 627-631. (in Chinese with English abstract)
[19] 廖爱民,刘九夫,张建云,等. 基于多类型雨量计的降雨特性分析[J]. 水科学进展,2020,31(6):852 − 861. [LIAO Aimin,LIU Jiufu,ZHANG Jianyun,et al. Analysis of rainfall characteristics based on multiple types of rain gauges[J]. Advances in Water Science,2020,31(6):852 − 861. (in Chinese with English abstract)
LIAO Aimin, LIU Jiufu, ZHANG Jianyun, et al. Analysis of rainfall characteristics based on multiple types of rain gauges[J]. Advances in Water Science, 2020, 31(6): 852-861. (in Chinese with English abstract)
[20] 李薛刚,刘九夫,廖爱民,等. 八种国内翻斗式雨量计翻斗计量误差测评分析[J]. 水电能源科学,2019,37(6):160 − 163. [LI Xuegang,LIU Jiufu,LIAO Aimin,et al. Evaluation of measurement errors for eight domestic tipping bucket rain gauges[J]. Water Resources and Power,2019,37(6):160 − 163. (in Chinese with English abstract)
LI Xuegang, LIU Jiufu, LIAO Aimin, et al. Evaluation of measurement errors for eight domestic tipping bucket rain gauges[J]. Water Resources and Power, 2019, 37(6): 160-163. (in Chinese with English abstract)