中国地质环境监测院
中国地质灾害防治工程行业协会
主办

基于SBAS-InSAR技术的安徽亳州市地面沉降时空分布特征与影响因素分析

何清, 魏路, 肖永红. 基于SBAS-InSAR技术的安徽亳州市地面沉降时空分布特征与影响因素分析[J]. 中国地质灾害与防治学报, 2023, 34(5): 81-90. doi: 10.16031/j.cnki.issn.1003-8035.202304004
引用本文: 何清, 魏路, 肖永红. 基于SBAS-InSAR技术的安徽亳州市地面沉降时空分布特征与影响因素分析[J]. 中国地质灾害与防治学报, 2023, 34(5): 81-90. doi: 10.16031/j.cnki.issn.1003-8035.202304004
HE Qing, WEI Lu, XIAO Yonghong. Analysis of spatial-temporal distribution characteristics and influencing factors of land subsidence in Bozhou City, Anhui Province based on SBAS-InSAR technology[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(5): 81-90. doi: 10.16031/j.cnki.issn.1003-8035.202304004
Citation: HE Qing, WEI Lu, XIAO Yonghong. Analysis of spatial-temporal distribution characteristics and influencing factors of land subsidence in Bozhou City, Anhui Province based on SBAS-InSAR technology[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(5): 81-90. doi: 10.16031/j.cnki.issn.1003-8035.202304004

基于SBAS-InSAR技术的安徽亳州市地面沉降时空分布特征与影响因素分析

详细信息
    作者简介: 何 清(1967-),男,本科,高级工程师,主要从事地质环境监测、地质测绘等技术工作。E-mail:heq@mail.ahdkj.gov.cn
    通讯作者: 魏 路(1983-),男,博士,高级工程师,主要从事水文地质、工程地质及环境地质调查与研究工作。E-mail:weilu101@126.com
  • 中图分类号: P642.26

Analysis of spatial-temporal distribution characteristics and influencing factors of land subsidence in Bozhou City, Anhui Province based on SBAS-InSAR technology

More Information
  • 近年来皖北平原地区地面沉降问题相对突出,区域地面沉降驱动力的量化研究尚且匮乏。为深入研究沉降灾害的发育特征,文章以亳州市为例,基于62景Sentinel-1数据,利用SBAS-InSAR技术获取2021年10月至2022年10月期间地面沉降的时空分布特征,并结合地理加权回归模型对亳州市地面沉降主要驱动力进行探讨。研究结果表明:(1)亳州市主体沉降速率为5~30 mm/a,平均沉降速率为5.7 mm/a。(2)最严重沉降区位于涡阳县公吉寺镇北侧,幅值为84.3 mm/a,沉降主要受煤矿开采所致;非采煤沉降区,最大沉降速率为25.8 mm/a,位于谯城区东北侧。(3)各驱动力因素对地面沉降的贡献度从大到小排序为深层水位变幅、中深层水位变幅、中深层地下水埋深、深层地下水埋深、单位面积GDP、松散层厚度、道路密度、人口密度。研究结果可为地质灾害防治提供基础数据支撑。

  • 加载中
  • 图 1  研究区范围

    Figure 1. 

    图 2  SBAS-InSAR技术路线

    Figure 2. 

    图 3  亳州市2021年10月至2022年10月形变速率分布图

    Figure 3. 

    图 4  亳州市2021年10月至2022年10月时序累计形变量图

    Figure 4. 

    图 5  各因子对地面沉降影响的回归系数图

    Figure 5. 

    表 1  Sentinel-1卫星数据参数表

    Table 1.  Parameters of Sentinel-1 satellite data

    参数数值监测日期
    轨道高度/km7002021-10-02、2021-10-14、2021-10-26、
    2021-11-07、2021-11-19、2021-12-01、
    2021-12-13、2022-01-06、2022-01-18、
    2022-01-30、2022-02-11、2022-02-23、
    2022-03-07、2022-03-19、2022-03-31、
    2022-04-12、2022-04-24、2022-05-06、
    2022-05-18、2022-05-30、2022-06-11、
    2022-06-23、2022-07-05、2022-07-17、
    2022-07-29、2022-08-10、2022-08-22、
    2022-09-03、2022-09-15、2022-09-27、
    2022-10-09
    重访周期/d12
    入射角/(°)29~46
    分辨率/m5×20
    幅宽/m250
    极化方式VV
    轨道号142,101 / 142,106
    下载: 导出CSV

    表 2  模型多重共线性检验

    Table 2.  Model multicollinearity test

    因子VIF因子VIF
    中深层地下水埋深1.234526松散层厚度1.519002
    中深层水位变幅1.625721人口密度1.116396
    深层水位变幅1.681352道路密度1.053348
    深层地下水埋深2.087465单位面积GDP2.481104
    下载: 导出CSV

    表 3  2022年地面沉降GWR回归模型参数

    Table 3.  Ground subsidence GWR regression model parameters for 2022

    监测年份带宽赤池信息准则可决系数校正可决系数
    2022年82411850.6575450.3945830.373125
    下载: 导出CSV

    表 4  SBAS-InSAR监测结果与水准数据对比

    Table 4.  Comparison between SBAS-InSAR monitoring results and leveling data

    点名实测形变量/mmSBAS-InSAR监测的形变量/mm差值/mm
    BJ0133.830.83
    BJ02−1−0.54−0.46
    BXJ08−4−3.78−0.22
    下载: 导出CSV

    表 5  模型运算结果叙述性统计

    Table 5.  Descriptive statistics of model calculation results

    变量最小值中值最大值平均值
    深层水位变幅-1.4870.9387.7693.141
    中深层水位变幅-1.4820.6022.6740.596
    中深层地下水埋深-0.747-0.3110.065-0.341
    深层地下水埋深-0.293-0.0500.085-0.104
    单位面积GDP-0.0030.0000.001-0.001
    松散层厚度-0.0140.0000.013-0.0005
    道路密度-0.0000.0000.0010.0005
    人口密度-0.0010.0000.0010.000
    下载: 导出CSV
  • [1]

    曹群,陈蓓蓓,宫辉力,等. 基于SBAS和IPTA技术的京津冀地区地面沉降监测[J]. 南京大学学报(自然科学),2019,55(3):381 − 391. [CAO Qun,CHEN Beibei,GONG Huili,et al. Monitoring of land subsidence in Beijing-Tianjin-Hebei Urban by combination of SBAS and IPTA[J]. Journal of Nanjing University (Natural Science),2019,55(3):381 − 391. (in Chinese with English abstract)

    CAO Qun, CHEN Beibei, GONG Huili, et al. Monitoring of land subsidence in Beijing-Tianjin-Hebei Urban by combination of SBAS and IPTA[J]. Journal of Nanjing University (Natural Science), 2019, 55(3): 381-391. (in Chinese with English abstract)

    [2]

    杨魁,闫利,黄国满,等. InSAR和地表覆盖的地表沉降驱动力分析[J]. 测绘科学,2019,44(1):42 − 47. [YANG Kui,YAN Li,HUANG Guoman,et al. Research on the change of urban subsidence based on InSAR and land cover of national geographic conditions[J]. Science of Surveying and Mapping,2019,44(1):42 − 47. (in Chinese with English abstract)

    YANG Kui, YAN Li, HUANG Guoman, et al. Research on the change of urban subsidence based on InSAR and land cover of national geographic conditions[J]. Science of Surveying and Mapping, 2019, 44(1): 42-47. (in Chinese with English abstract)

    [3]

    朱邦彦,唐超,任志忠,等. 基于PS-InSAR技术的珠海市地表形变监测与驱动力分析[J]. 测绘通报,2022(6):108 − 113. [ZHU Bangyan,TANG Chao,REN Zhizhong,et al. Surface deformation monitoring and driving force analysis in Zhuhai city based on PS-InSAR technology[J]. Bulletin of Surveying and Mapping,2022(6):108 − 113. (in Chinese with English abstract)

    ZHU Bangyan, TANG Chao, REN Zhizhong, et al. Surface deformation monitoring and driving force analysis in Zhuhai city based on PS-InSAR technology[J]. Bulletin of Surveying and Mapping, 2022(6): 108-113. (in Chinese with English abstract)

    [4]

    尹承深,刘全明,王福强. 基于Sentinel-1A SAR数据的呼和浩特城区地表形变分析[J]. 中国地质灾害与防治学报,2023,34(2):73 − 81. [YIN Chengshen,LIU Quanming,WANG Fuqiang. Surface deformation analysis of Hohhot urban area based on SAR data from Sentinel-1A[J]. The Chinese Journal of Geological Hazard and Control,2023,34(2):73 − 81. (in Chinese with English abstract)

    YIN Chengshen, LIU Quanming, WANG Fuqiang. Surface deformation analysis of Hohhot urban area based on SAR data from Sentinel-1A[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(2): 73-81. (in Chinese with English abstract)

    [5]

    戴真印,刘岳霖,张丽平,等. 基于改进时序InSAR技术的东莞地面沉降时空演变特征[J]. 中国地质灾害与防治学报,2023,34(1):58 − 67. [DAI Zhenyin,LIU Yuelin,ZHANG Liping,et al. Spatial-temporal evolution characteristics of land subsidence in Dongguan City based on improved InSAR technology[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):58 − 67. (in Chinese with English abstract)

    DAI Zhenyin, LIU Yuelin, ZHANG Liping, et al. Spatial-temporal evolution characteristics of land subsidence in Dongguan City based on improved InSAR technology[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 58-67. (in Chinese with English abstract)

    [6]

    董少春,种亚辉,胡欢,等. 基于时序InSAR的常州市2015—2018年地面沉降监测[J]. 南京大学学报(自然科学),2019,55(3):370 − 380. [DONG Shaochun,CHONG Yahui,HU Huan,et al. Ground subsidence monitoring during 2015-2018 in Changzhou based on time series InSAR method[J]. Journal of Nanjing University (Natural Science),2019,55(3):370 − 380. (in Chinese with English abstract)

    DONG Shaochun, CHONG Yahui, HU Huan, et al. Ground subsidence monitoring during 2015-2018 in Changzhou based on time series InSAR method[J]. Journal of Nanjing University (Natural Science), 2019, 55(3): 370-380. (in Chinese with English abstract)

    [7]

    郭世鹏,张王菲,康伟,等. 融合PS、SBAS、DS InSAR技术的昆明地面沉降研究[J]. 遥感技术与应用,2022,37(2):460 − 473. [GUO Shipeng,ZHANG Wangfei,KANG Wei,et al. The study on land subsidence in Kunming by integrating PS,SBAS and DS InSAR[J]. Remote Sensing Technology and Application,2022,37(2):460 − 473. (in Chinese with English abstract)

    GUO Shipeng, ZHANG Wangfei, KANG Wei, et al. The study on land subsidence in Kunming by integrating PS, SBAS and DS InSAR[J]. Remote Sensing Technology and Application, 2022, 37(2): 460-473. (in Chinese with English abstract)

    [8]

    陈毅,何毅,张立峰,等. 长短时记忆网络TS-InSAR地表形变预测[J]. 遥感学报,2022,26(7):1326 − 1341. [CHEN Yi,HE Yi,ZHANG Lifeng,et al. Surface deformation prediction based on TS-InSAR technology and long short-term memory networks[J]. National Remote Sensing Bulletin,2022,26(7):1326 − 1341. (in Chinese with English abstract) doi: 10.11834/jrs.20221457

    CHEN Yi, HE Yi, ZHANG Lifeng, et al. Surface deformation prediction based on TS-InSAR technology and long short-term memory networks[J]. National Remote Sensing Bulletin, 2022, 26(7): 1326-1341. (in Chinese with English abstract) doi: 10.11834/jrs.20221457

    [9]

    ZHANG Peng,GUO Zihao,GUO Shuangfeng,et al. Land subsidence monitoring method in regions of variable radar reflection characteristics by integrating PS-InSAR and SBAS-InSAR techniques[J]. Remote Sensing,2022,14(14):3265. doi: 10.3390/rs14143265

    [10]

    张凯翔,张占荣,于宪煜. SBAS-InSAR和PS-InSAR技术在鲁西南某线性工程沿线地面沉降成因分析中的应用[J]. 中国地质灾害与防治学报,2022,33(4):65 − 76. [ZHANG Kaixiang,ZHANG Zhanrong,YU Xianyu. Application of SBAS-InSAR and PS-InSAR technologies in analysis of landslide subsidence along a linear infrastructure in Southwestern Shandong[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):65 − 76. (in Chinese with English abstract)

    ZHANG Kaixiang, ZHANG Zhanrong, YU Xianyu. Application of SBAS-InSAR and PS-InSAR technologies in analysis of landslide subsidence along a linear infrastructure in Southwestern Shandong[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 65-76. (in Chinese with English abstract)

    [11]

    何秀凤,高壮,肖儒雅,等. InSAR与北斗/GNSS综合方法监测地表形变研究现状与展望[J]. 测绘学报,2022,51(7):1338 − 1355. [HE Xiufeng,GAO Zhuang,XIAO Ruya,et al. Application and prospect of the integration of InSAR and BDS/GNSS for land surface deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica,2022,51(7):1338 − 1355. (in Chinese with English abstract)

    HE Xiufeng, GAO Zhuang, XIAO Ruya, et al. Application and prospect of the integration of InSAR and BDS/GNSS for land surface deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1338-1355. (in Chinese with English abstract)

    [12]

    李志伟,许文斌,胡俊,等. InSAR部分地学参数反演[J]. 测绘学报,2022,51(7):1458 − 1475. [LI Zhiwei,XU Wenbin,HU Jun,et al. Partial geoscience parameters inversion from InSAR observation[J]. Acta Geodaetica et Cartographica Sinica,2022,51(7):1458 − 1475. (in Chinese with English abstract)

    LI Zhiwei, XU Wenbin, HU Jun, et al. Partial geoscience parameters inversion from InSAR observation[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1458-1475. (in Chinese with English abstract)

    [13]

    FERRETTI A,PRATI C,ROCCA F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing,2001,39(1):8 − 20. doi: 10.1109/36.898661

    [14]

    BERARDINO P,FORNARO G,LANARI R,et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2375 − 2383. doi: 10.1109/TGRS.2002.803792

    [15]

    高胜,曾琪明,焦健,等. 永久散射体雷达干涉研究综述[J]. 遥感技术与应用,2016,31(1):86 − 94. [GAO Sheng,ZENG Qiming,JIAO Jian,et al. A review on persistent scatterer interferometric synthetic aperture radar[J]. Remote Sensing Technology and Application,2016,31(1):86 − 94. (in Chinese with English abstract)

    GAO Sheng, ZENG Qiming, JIAO Jian, et al. A review on persistent scatterer interferometric synthetic aperture radar[J]. Remote Sensing Technology and Application, 2016, 31(1): 86-94. (in Chinese with English abstract)

    [16]

    朱建军,李志伟,胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报,2017,46(10):1717 − 1733. [ZHU Jianjun,LI Zhiwei,HU Jun. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica,2017,46(10):1717 − 1733. (in Chinese with English abstract) doi: 10.11947/j.AGCS.2017.20170350

    ZHU Jianjun, LI Zhiwei, HU Jun. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1717-1733. (in Chinese with English abstract) doi: 10.11947/j.AGCS.2017.20170350

    [17]

    潘建平,邓福江,徐正宣,等. 基于轨道精炼控制点精选的极艰险区域时序InSAR地表形变监测[J]. 中国地质灾害与防治学报,2021,32(5):98 − 104. [PAN Jianping,DENG Fujiang,XU Zhengxuan,et al. Time series InSAR surface deformation monitoring in extremely difficult area based on track refining control points selection[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):98 − 104. (in Chinese with English abstract)

    PAN Jianping, DENG Fujiang, XU Zhengxuan, et al. Time series InSAR surface deformation monitoring in extremely difficult area based on track refining control points selection[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 98-104. (in Chinese with English abstract)

    [18]

    王守沛,胡留洋. 基于D-InSAR技术在亳州市地面沉降分析[J]. 西部探矿工程,2020,32(7):114 − 116. [WANG Shoupei,HU Liuyang. Analysis of land subsidence in Bozhou city based on D-InSAR technology[J]. West-China Exploration Engineering,2020,32(7):114 − 116. (in Chinese)

    WANG Shoupei, HU Liuyang. Analysis of land subsidence in Bozhou city based on D-InSAR technology[J]. West-China Exploration Engineering, 2020, 32(7): 114-116. (in Chinese)

    [19]

    彭鹏. 基于SBAS技术的亳州市地面沉降遥感监测应用研究[J]. 西部资源,2016(4):152 − 155. [PENG Peng. Bozhou city ground subsidence monitoring based on SBAS[J]. Westem Resources,2016(4):152 − 155. (in Chinese with English abstract)

    PENG Peng. Bozhou city ground subsidence monitoring based on SBAS[J]. Westem Resources, 2016(4): 152-155. (in Chinese with English abstract)

    [20]

    辛洪光,朱虎,辛翌龙. 亳州市地面沉降成因分析与防治对策[J]. 城市与减灾,2021(3):34 − 38. [XIN Hongguang,ZHU Hu,XIN Yilong. Cause analysis and controlling countermeasures of surface subsidence in Bozhou City,Anhui Province[J]. City and Disaster Reduction,2021(3):34 − 38. (in Chinese)

    XIN Hongguang, ZHU Hu, XIN Yilong. Cause analysis and controlling countermeasures of surface subsidence in Bozhou city, Anhui Province[J]. City and Disaster Reduction, 2021(3): 34-38. (in Chinese)

    [21]

    潘光永,陶秋香,陈洋,等. 基于SBAS-InSAR的山东济阳矿区沉降监测与分析[J]. 中国地质灾害与防治学报,2020,31(4):100 − 106. [PAN Guangyong,TAO Qiuxiang,CHEN Yang,et al. Monitoring and analysis of sedimentation in Jiyang mining area of Shandong Province based on SBAS-InSAR[J]. The Chinese Journal of Geological Hazard and Control,2020,31(4):100 − 106. (in Chinese with English abstract)

    PAN Guangyong, TAO Qiuxiang, CHEN Yang, et al. Monitoring and analysis of sedimentation in Jiyang mining area of Shandong Province based on SBAS-InSAR[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(4): 100-106. (in Chinese with English abstract)

    [22]

    莫莉,王贤能. 基于PS-InSAR技术的后海深槽地面及建筑物形变监测分析[J]. 中国地质灾害与防治学报,2023,34(1):68 − 74. [MO Li,WANG Xianneng. Monitoring and analysis of ground and building settlement of deep trough in Houhai based on PS-InSAR technology[J]. The Chinese Journal of Geological Hazard and Control,2023,34(1):68 − 74. (in Chinese with English abstract)

    MO Li, WANG Xianneng. Monitoring and analysis of ground and building settlement of deep trough in Houhai based on PS-InSAR technology[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 68-74. (in Chinese with English abstract)

    [23]

    杨正荣,喜文飞,史正涛,等. 基于SBAS-InSAR技术的白鹤滩水电站库岸潜在滑坡变形分析[J]. 中国地质灾害与防治学报,2022,33(5):83 − 92. [YANG Zhengrong,XI Wenfei,SHI Zhengtao,et al. Deformation analysis in the bank slopes in the reservoir area of Baihetan Hydropower Station based on SBAS-InSAR technology[J]. The Chinese Journal of Geological Hazard and Control,2022,33(5):83 − 92. (in Chinese with English abstract)

    YANG Zhengrong, XI Wenfei, SHI Zhengtao, et al. Deformation analysis in the bank slopes in the reservoir area of Baihetan Hydropower Station based on SBAS-InSAR technology[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 83-92. (in Chinese with English abstract)

    [24]

    蒲川豪,许强,蒋亚楠,等. 延安新区地面沉降分布及影响因素的时序InSAR监测分析[J]. 武汉大学学报(信息科学版),2020,45(11):1728 − 1738. [PU Chuanhao,XU Qiang,JIANG Yanan,et al. Analysis of land subsidence distribution and influencing factors in Yan’an new district based on time series InSAR[J]. Geomatics and Information Science of Wuhan University,2020,45(11):1728 − 1738. (in Chinese with English abstract)

    PU Chuanhao, XU Qiang, JIANG Yanan, et al. Analysis of land subsidence distribution and influencing factors in Yan’an new district based on time series InSAR[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1728-1738. (in Chinese with English abstract)

    [25]

    叶勇超,闫超德,罗先学,等. 时序InSAR郑州地铁沿线地面沉降分析[J]. 遥感学报,2022,26(7):1342 − 1353. [YE Yongchao,YAN Chaode,LUO Xianxue,et al. Analysis of ground subsidence along Zhengzhou metro based on time series InSAR[J]. National Remote Sensing Bulletin,2022,26(7):1342 − 1353. (in Chinese with English abstract) doi: 10.11834/jrs.20211246

    YE Yongchao, YAN Chaode, LUO Xianxue, et al. Analysis of ground subsidence along Zhengzhou metro based on time series InSAR[J]. National Remote Sensing Bulletin, 2022, 26(7): 1342-1353. (in Chinese with English abstract) doi: 10.11834/jrs.20211246

    [26]

    BRUNSDON C,FOTHERINGHAM A S,CHARLTON M E. Geographically weighted regression:A method for exploring spatial nonstationarity[J]. Geographical Analysis,2010,28(4):281 − 298. doi: 10.1111/j.1538-4632.1996.tb00936.x

    [27]

    张扬. 武汉市地面沉降时空格局、驱动因子及水文效应研究[D]. 武汉: 武汉大学, 2019

    ZHANG Yang. Spatial-temporal patterns, driving forces and hydrological effects of land subsidence: A case study of Wuhan City, China[D]. Wuhan: Wuhan University, 2019. (in Chinese with English abstract)

    [28]

    张琦,曹蔚宁,延书宁. 旅游发展对城乡收入差距影响的空间异质性—基于多尺度地理加权回归模型(MGWR)[J]. 中国地质大学学报(社会科学版),2022,22(5):112 − 123. [ZHANG Qi,CAO Weining,YAN Shuning. Spatial heterogeneity of the impact of tourism development on urban-rural income gap in china—based on multi-scale geographically weighted regression model(MGWR)[J]. Journal of China University of Geosciences (Social Sciences Edition),2022,22(5):112 − 123. (in Chinese with English abstract)

    ZHANG Qi, CAO Weining, YAN Shuning. Spatial heterogeneity of the impact of tourism development on urban-rural income gap in china—based on multi-scale geographically weighted regression model(MGWR)[J]. Journal of China University of Geosciences (Social Sciences Edition), 2022, 22(5): 112-123. (in Chinese with English abstract)

    [29]

    JI Yanjie,MA Xinwei,YANG Mingyuan,et al. Exploring spatially varying influences on metro-bikeshare transfer:A geographically weighted Poisson regression approach[J]. Sustainability,2018,10(5):1526. doi: 10.3390/su10051526

    [30]

    梁勇旗,杜守华. 浅谈煤矿采空区的塌陷机理及发展因素[J]. 岩土工程界,2008(8):35 − 37. [LIANG Yongqi,DU Shouhua. Discussion on collapse mechanism and development factors of coal mine goaf[J]. Geotechnical Engineering World,2008(8):35 − 37. (in Chinese)

    LIANG Yongqi, DU Shouhua. Discussion on collapse mechanism and development factors of coal mine goaf[J]. Geotechnical Engineering World, 2008(8): 35-37. (in Chinese)

    [31]

    黄多成,王守沛. 亳州市城市环境地质问题及防治对策浅析[J]. 地下水,2020,42(4):126 − 128. [HUANG Duocheng,WANG Shoupei. A brief analysis of Bozhou City environmental geological problems and countermeasures[J]. Ground Water,2020,42(4):126 − 128. (in Chinese with English abstract)

    HUANG Duocheng, WANG Shoupei. A brief analysis of Bozhou city environmental geological problems and countermeasures[J]. Ground Water, 2020, 42(4): 126-128. (in Chinese with English abstract)

  • 加载中

(5)

(5)

计量
  • 文章访问数:  809
  • PDF下载数:  40
  • 施引文献:  0
出版历程
收稿日期:  2023-04-07
修回日期:  2023-07-12
刊出日期:  2023-10-25

目录