中国地质环境监测院
中国地质灾害防治工程行业协会
主办

松散堆积体斜坡变形-滑移过程的声发射特征参数演化规律

李龙灿, 吴鑫, 刘永红, 海英, 张满, 张龙梅, 黄成佳. 松散堆积体斜坡变形-滑移过程的声发射特征参数演化规律[J]. 中国地质灾害与防治学报, 2024, 35(5): 151-159. doi: 10.16031/j.cnki.issn.1003-8035.202312041
引用本文: 李龙灿, 吴鑫, 刘永红, 海英, 张满, 张龙梅, 黄成佳. 松散堆积体斜坡变形-滑移过程的声发射特征参数演化规律[J]. 中国地质灾害与防治学报, 2024, 35(5): 151-159. doi: 10.16031/j.cnki.issn.1003-8035.202312041
LI Longcan, WU Xin, LIU Yonghong, HAI Ying, ZHANG Man, ZHANG Longmei, HUANG Chengjia. Evolution of the characteristic parameters of acoustic emission from deformation to failure of a loose soil slope[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(5): 151-159. doi: 10.16031/j.cnki.issn.1003-8035.202312041
Citation: LI Longcan, WU Xin, LIU Yonghong, HAI Ying, ZHANG Man, ZHANG Longmei, HUANG Chengjia. Evolution of the characteristic parameters of acoustic emission from deformation to failure of a loose soil slope[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(5): 151-159. doi: 10.16031/j.cnki.issn.1003-8035.202312041

松散堆积体斜坡变形-滑移过程的声发射特征参数演化规律

  • 基金项目: 国家应急管理部安全生产重特大事故防治关键技术项目(Sichuan-0011-2018AQ);四川省科技计划项目(24NSFSC0343;2023NSFSC1038)
详细信息
    作者简介: 李龙灿(1994—),男,陕西咸阳人,资源与环境专业,硕士,主要从事矿山岩土力学与灾害防治研究。E-mail:llc412257968@qq.com
    通讯作者: 吴 鑫(1983—),男,四川遂宁人,岩土工程专业,博士,副教授,主要从事矿山岩土力学与灾害防治研究。E-mail:xinwu@sicnu.edu.cn
  • 中图分类号: P642.22;X936

Evolution of the characteristic parameters of acoustic emission from deformation to failure of a loose soil slope

More Information
  • 松散堆积体在自然界和工业生产中广泛存在,有复杂的力学性质和相对较高的失稳风险。为研究其在斜坡变形中的滑移失稳过程,基于声发射技术探究了松散体从静止、蠕变到滑移整个过程中声学特征演化规律。分析松散体在滑移过程中的声发射特征(acoustic emission,AE)参数,然后结合松散体的状态变化对AE演化阶段进行了划分,最后结合颗粒图像测速法(particle image velocimetry,PIV)分析和频谱变化进一步验证了松散体滑移过程的AE演化规律。结果表明:振铃计数和能量随滑移过程而逐渐增大,b值(小事件数与大事件数的比值)随滑移过程逐渐降低,b值、振铃计数和能量的滑移门槛值为0.2、5000次和1500 mV·ms,其中b值对松散体的状态变化更敏感;频谱重心在临滑移前期有30~50 kHz的降幅,而后发生震荡变化,其震荡时间区域正好对应振铃计数和能量数值相对较高及b值相对较低的时间区域;此外松散体滑移前存在一个重要的“窗口期”,说明AE技术具有识别松散体滑坡前兆的潜力。

  • 加载中
  • 图 1  装置设计图

    Figure 1. 

    图 2  装置实景图

    Figure 2. 

    图 3  AE数据预处理图

    Figure 3. 

    图 4  振铃计数和能量随时间变化图

    Figure 4. 

    图 5  b值和频谱重心随时间变化图

    Figure 5. 

    图 6  声发射结合PIV滑移过程分析图

    Figure 6. 

    图 7  各试验组综合分析图

    Figure 7. 

    表 1  各试验组预测时刻表

    Table 1.  Predicted timetable for each test group

    编号 实际滑移点 滑移预警点 提前时间/帧
    SY1Z1T 510 439 71
    SY1Z2T 700 486 214
    SY2Z1T 650 565 85
    SY2Z2T 660 586 74
    SY3Z1T 720 672 48
    SY3Z2T 738 558 180
      注:SY1Z1T含义为试验1组第1通道,下同理。
    下载: 导出CSV
  • [1]

    邓李政,袁宏永,张鸣之,等. 滑坡变形监测预警技术研究进展[J]. 清华大学学报(自然科学版),2023,63(6):849 − 864. [DENG Lizheng,YUAN Hongyong,ZHANG Mingzhi,et al. Research progress on landslide deformation monitoring and early warning technology[J]. Journal of Tsinghua University (Science and Technology),2023,63(6):849 − 864. (in Chinese with English abstract)]

    DENG Lizheng, YUAN Hongyong, ZHANG Mingzhi, et al. Research progress on landslide deformation monitoring and early warning technology[J]. Journal of Tsinghua University (Science and Technology), 2023, 63(6): 849 − 864. (in Chinese with English abstract)

    [2]

    冉林,马鹏辉,彭建兵,等. 甘肃黑方台“10•5” 黄土滑坡启动及运动特征分析[J]. 中国地质灾害与防治学报,2022,33(6):1 − 9. [RAN Lin,MA Penghui,PENG Jianbing,et al. The initiation and motion characteristics of the “10•5” loess landslide in the Heifangtai platform,Gansu Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(6):1 − 9. (in Chinese with English abstract)]

    RAN Lin, MA Penghui, PENG Jianbing, et al. The initiation and motion characteristics of the “10•5” loess landslide in the Heifangtai platform, Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 1 − 9. (in Chinese with English abstract)

    [3]

    韦忠跟,徐玉龙,丁辉,等. 霍林河北露天煤矿排土场边坡滑坡模式与雷达监测预警[J]. 现代矿业,2022,38(1):71 − 74. [WEI Zhonggen,XU Yulong,DING Hui,et al. Slope landslide mode and radar monitoring and early warning of dump slope in Huolinhe north open-pit coal mine[J]. Modern Mining,2022,38(1):71 − 74. (in Chinese with English abstract)] doi: 10.3969/j.issn.1674-6082.2022.01.016

    WEI Zhonggen, XU Yulong, DING Hui, et al. Slope landslide mode and radar monitoring and early warning of dump slope in Huolinhe north open-pit coal mine[J]. Modern Mining, 2022, 38(1): 71 − 74. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-6082.2022.01.016

    [4]

    丁保艳,翟向华,张卫雄,等. 大型高位堆积体滑坡稳定性分析与数值模拟[J]. 地震工程学报,2022,44(4):786 − 793. [DING Baoyan,ZHAI Xianghua,ZHANG Weixiong,et al. Analysis and numerical simulation of the stability of large high-position accumulation landslides[J]. China Earthquake Engineering Journal,2022,44(4):786 − 793. (in Chinese with English abstract)]

    DING Baoyan, ZHAI Xianghua, ZHANG Weixiong, et al. Analysis and numerical simulation of the stability of large high-position accumulation landslides[J]. China Earthquake Engineering Journal, 2022, 44(4): 786 − 793. (in Chinese with English abstract)

    [5]

    吴绿川,王剑辉,符彦. 基于InSAR技术和光学遥感的贵州省滑坡早期识别与监测[J]. 测绘通报,2021(7):98 − 102. [WU Lyuchuan,WANG Jianhui,FU Yan. Early identifying and monitoring landslides in Guizhou Province with InSAR and optical remote sensing[J]. Bulletin of Surveying and Mapping,2021(7):98 − 102. (in Chinese with English abstract)]

    WU Lyuchuan, WANG Jianhui, FU Yan. Early identifying and monitoring landslides in Guizhou Province with InSAR and optical remote sensing[J]. Bulletin of Surveying and Mapping, 2021(7): 98 − 102. (in Chinese with English abstract)

    [6]

    王琼,欧元超,张平松. 基于文献计量的滑坡监测技术现状及趋势分析[J]. 人民长江,2022,53(8):123 − 132. [WANG Qiong,OU Yuanchao,ZHANG Pingsong. Status and trend analysis of landslide monitoring technology based on bibliometrics[J]. Yangtze River,2022,53(8):123 − 132. (in Chinese with English abstract)]

    WANG Qiong, OU Yuanchao, ZHANG Pingsong. Status and trend analysis of landslide monitoring technology based on bibliometrics[J]. Yangtze River, 2022, 53(8): 123 − 132. (in Chinese with English abstract)

    [7]

    石爱红,李国庆,丁德民,等. 考虑非饱和土基质吸力的丁家坡滑坡变形机制及稳定性评价[J]. 水文地质工程地质,2022,49(6):141 − 151. [SHI Aihong,LI Guoqing,DING Demin,et al. Deformation mechanism and stability evaluation of Dingjiapo landslide considering the matric suction of unsaturated soil[J]. Hydrogeology & Engineering Geology,2022,49(6):141 − 151. (in Chinese with English abstract)]

    SHI Aihong, LI Guoqing, DING Demin, et al. Deformation mechanism and stability evaluation of Dingjiapo landslide considering the matric suction of unsaturated soil[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 141 − 151. (in Chinese with English abstract)

    [8]

    BAO Han,LIU Li,LAN Hengxing,et al. Evolution of high-filling loess slope under long-term seasonal fluctuation of groundwater[J]. CATENA,2024,238:107898. doi: 10.1016/j.catena.2024.107898

    [9]

    CUI Peng,GE Yonggang,LI Shaojun,et al. Scientific challenges in disaster risk reduction for the Sichuan–Tibet Railway[J]. Engineering Geology,2022,309:106837. doi: 10.1016/j.enggeo.2022.106837

    [10]

    CODEGLIA D,DIXON N,FOWMES G J,et al. Analysis of acoustic emission patterns for monitoring of rock slope deformation mechanisms[J]. Engineering Geology,2017,219:21 − 31. doi: 10.1016/j.enggeo.2016.11.021

    [11]

    BERG N,SMITH A,RUSSELL S,et al. Correlation of acoustic emissions with patterns of movement in an extremely slow-moving landslide at Peace River,Alberta,Canada[J]. Canadian Geotechnical Journal,2018,55(10):1475 − 1488. doi: 10.1139/cgj-2016-0668

    [12]

    HU Wei,SCARINGI G,XU Qiang,et al. Acoustic emissions and microseismicity in granular slopes prior to failure and flow-like motion:The potential for early warning[J]. grl,2018,45(19):10.

    [13]

    CHEN Yuzhi,CHEN Shijie. Experimental study on acoustic emission characteristics of bond-slip for BFRP concrete[J]. Russian Journal of Nondestructive Testing,2020,56(2):119 − 130. doi: 10.1134/S1061830920020035

    [14]

    DENG Lizheng,YUAN Hongyong,CHEN Jianguo,et al. Prefabricated acoustic emission array system for landslide monitoring[J]. Engineering Geology,2023,323:107185. doi: 10.1016/j.enggeo.2023.107185

    [15]

    李文彪,王轶,陈新,等. 基于声发射监测的路堤相似模拟破坏过程分形特征研究[J]. 公路,2017,62(7):33 − 38. [LI Wenbiao,WANG Yi,CHEN Xin,et al. Fractal analysis of similar simulation of embankment failure process based on acoustic emission monitoring technology[J]. Highway,2017,62(7):33 − 38. (in Chinese with English abstract)]

    LI Wenbiao, WANG Yi, CHEN Xin, et al. Fractal analysis of similar simulation of embankment failure process based on acoustic emission monitoring technology[J]. Highway, 2017, 62(7): 33 − 38. (in Chinese with English abstract)

    [16]

    胡训健,卞康,刘建,等. 花岗岩晶体粒径分布对声发射特性影响的颗粒流模拟[J]. 煤炭学报,2021,46(增刊2):721 − 730. [HU Xunjian,BIAN Kang,LIU Jian,et al. Particle flow simulation of the influence of granite crystal size distributionon acoustic emission characteristics [J]. Journal of China Coal Society,2021,46(Sup 2):721 − 730. (in Chinese with English abstract)]

    HU Xunjian, BIAN Kang, LIU Jian, et al. Particle flow simulation of the influence of granite crystal size distributionon acoustic emission characteristics [J]. Journal of China Coal Society, 2021, 46(Sup 2): 721 − 730. (in Chinese with English abstract)

    [17]

    吴鑫,罗筱毓,李龙灿,等. 不同速率下松散颗粒直剪试验声发射特征研究[J/OL]. 西南交通大学学报(2023-09-01)[2023-12-10]. [WU Xin,LUO Xiaoyu,LI Longcan,et al. Experimental research on acoustic emission characteristics of loose particles in direct shear process at different rates[J/OL]. Journal of Southwest Jiaotong University(2023-09-01)[2023-12-10]. https://kns.cnki.net/kcms2/article/abstract?v=Fc1KeZPKhRGwbjFp-Euk0_SSulppLegaQ4PmGickmbI6JAOeM33IXiGUdUHHztT-a6sXD8sFH6yOq769YYfppURcvZGYknmk39NJfwRdMjmms7DbwtOn2uR-m4aW4chDbWE3TEVsXC44u9FtUvxxQy27yuWNKdhxC6sAk4yPOGcuP1S4Yq_8VZgU6m4VSfM2&uniplatform=NZKPT&language=CHS (in Chinese with English abstract)]

    WU Xin, LUO Xiaoyu, LI Longcan, et al. Experimental research on acoustic emission characteristics of loose particles in direct shear process at different rates[J/OL]. Journal of Southwest Jiaotong University(2023-09-01)[2023-12-10]. https://kns.cnki.net/kcms2/article/abstract?v=Fc1KeZPKhRGwbjFp-Euk0_SSulppLegaQ4PmGickmbI6JAOeM33IXiGUdUHHztT-a6sXD8sFH6yOq769YYfppURcvZGYknmk39NJfwRdMjmms7DbwtOn2uR-m4aW4chDbWE3TEVsXC44u9FtUvxxQy27yuWNKdhxC6sAk4yPOGcuP1S4Yq_8VZgU6m4VSfM2&uniplatform=NZKPT&language=CHS (in Chinese with English abstract)

    [18]

    陈锡锐,刘虹强,杨剑红,等. 四川宝兴张家沟危岩体稳定性及运动学分析[J]. 中国地质灾害与防治学报,2024,35(2):81 − 89. [CHEN Xirui,LIU Hongqiang,YANG Jianhong,et al. Analysis of stability and kinematics of the dangerous rock mass in Zhangjiagou,Baoxing,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2024,35(2):81 − 89. (in Chinese with English abstract)]

    CHEN Xirui, LIU Hongqiang, YANG Jianhong, et al. Analysis of stability and kinematics of the dangerous rock mass in Zhangjiagou, Baoxing, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(2): 81 − 89. (in Chinese with English abstract)

    [19]

    冯谕,曾怀恩,涂鹏飞. 遗传算法下的滑坡蠕滑位移预测模型研究[J]. 中国地质灾害与防治学报,2024,35(1):82 − 91. [FENG Yu,ZENG Huaien,TU Pengfei. Research on prediction model of landslide creep displacement on genetic algorithm[J]. The Chinese Journal of Geological Hazard and Control,2024,35(1):82 − 91. (in Chinese with English abstract)]

    FENG Yu, ZENG Huaien, TU Pengfei. Research on prediction model of landslide creep displacement on genetic algorithm[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 82 − 91. (in Chinese with English abstract)

    [20]

    HAERI H,SARFARAZI V,SHEMIRANI A B,et al. Field evaluation of soil liquefaction and its confrontation in fine-grained sandy soils (case study:South of Hormozgan Province)[J]. Journal of Mining Science,2017,53(3):457 − 468. doi: 10.1134/S1062739117032356

    [21]

    李修磊,谢飞,陈臣,等. 基于声发射的张开型单裂隙岩石裂纹扩展行为特性研究[J]. 水文地质工程地质,2024,51(3):90 − 101. [LI Xiulei,XIE Fei,CHEN Chen,et al. Investigation of crack propagation behavior of opening single fractured rock based on acoustic emission technology[J]. Hydrogeology & Engineering Geology,2024,51(3):90 − 101. (in Chinese with English abstract)]

    LI Xiulei, XIE Fei, CHEN Chen, et al. Investigation of crack propagation behavior of opening single fractured rock based on acoustic emission technology[J]. Hydrogeology & Engineering Geology, 2024, 51(3): 90 − 101. (in Chinese with English abstract)

  • 加载中

(7)

(1)

计量
  • 文章访问数:  127
  • PDF下载数:  22
  • 施引文献:  0
出版历程
收稿日期:  2023-12-31
修回日期:  2024-08-11
录用日期:  2024-08-12
刊出日期:  2024-10-25

目录