MARINE GEO-ENVIRONMENT ANALYSIS OF THE PROPOSED BRIDGE-TUNNEL PATH SYSTEM ACROSS THE BOHAI STRAIT AND SUGGESTIONS ON CONSTRUCTION SCHEMES
-
摘要:
通过对渤海海峡跨海通道的地壳稳定性、海洋地质环境及海岛调查研究,证明渤海海峡适合修建跨海通道,且南桥北隧是最佳修建方案。修建跨海通道非常必要且具有非常高的经济效益。以公路通道计算,若能达到日均40 000辆的车流量,建成后每年将节减大约170亿元的燃油费及相应的燃油污染排放,7年即可收回投资成本,并可部分降低京津冀地区的雾霾水平和缓解交通压力。最佳修建线路是沿庙岛群岛轴部,这里地壳比周边更稳定、沉积物更薄,且实际跨海距离最短。蓬莱角至砣矶岛水深较浅,平均水深约20 m,修桥是可行的;砣矶岛至大钦岛,平均水深35~40 m;大钦岛至老铁山角,平均水深约50~55 m。我们建议的南桥北隧方案,不同于前人提议的以北隍城岛作为桥隧连接地点的南桥北隧方案。砣矶岛面积7.05 km2,是首选的桥隧连接地点,大钦岛也可作为桥隧连接地点,可作为次选方案考虑。若砣矶岛作为桥隧连接地点,桥长约43 km, 隧道长约70 km;若选大钦岛作为桥隧连接地点,则桥长约58 km, 隧道长约55 km;桥隧总长约113 km。南桥北隧方案,估计修建用时约为8~12年,总投资约为1 000~1 200亿元,工程使用年限以100年计。渤海是中国的内海,其风浪规模比东海、南海小。渤海海峡的南桥,受风浪的影响程度,虽比青岛胶州湾大桥大一些,但与杭州湾跨海大桥相仿,仅海水深度稍大一些。渤海海峡区估计每年约有60余天的风雾影响通行,这正好与两端邻近陆地上的风雾影响在时段和时间上相符合,可一起进行封闭或开通道路操作,实属正常,不应作为否定南桥北隧方案的理由。在海水较浅区域,修桥成本低,场地宽阔,容易施工且施工周期短。挖海底隧道成本较昂贵,施工难度大且周期长。基本上是隧道的长度决定了施工周期。全隧方案虽有“全天候”之美称,但由于全隧方案隧道长125 km,投资2 500亿元,比我们提出的南桥北隧方案多花一倍以上的投资,修建用时也是多1倍以上,且必须在全部建完后才产生经济效益,故费钱费时、效率较低,是不适宜的。时代发展的趋势是,高速公路迅速崛起,铁路货运急剧下滑,公路通道比铁路通道更急需应优先考虑。南桥北隧方案,南桥是修建公路的南桥,北隧,有两种选择:如果通风等技术问题能够解决,应首先考虑修建公路通道的北隧;如果不能实现的话,那么,退而求其次修建铁路通道的北隧,用火车背负汽车过北隧,其效率低于公路通道汽车直接过北隧,运力不足也只能用滚装船轮渡汽车来补充。总之,不管是修公路通道还是铁路通道,甚至还是二者都要修,最佳方案都应该是南桥北隧,这样较省钱省时效率高,并在修建期间就可阶段性地产生经济效益。此外,南桥以地震基本烈度Ⅷ度设防,并能抗12级或以上台风及相应浪流,桥墩修建应尽量避开断裂带。北隧以地震基本烈度Ⅶ度设防。这正是:南部水浅利修桥,南桥北隧奇通道;阶段施工见效益,省钱省时效率高!
Abstract:Surveys of earth crust stability, marine geo-environment and island geology along the Bohai Strait suggest that the Bohai Strait is feasible for cross-strait path construction, and the scheme of "bridge-south and tunnel-north" is the best and optimum one for construction among others. Construction of such a path way will certainly bring very high economic benefits to the region as well as to the country. A rough calculation for a highway with possible traffic flow of 40 000 vehicles per day suggests that 17 billion RMB of fuel charge could be saved every year with the facility, and it takes only six years to recover the investment cost in the years to come.It will certainly relieve the traffic pressure around the region and as the result reduce the haze caused by fuel emission. The optimum route for such a path is along the axis of the Miaodao islands because of more stable earth crust, thinner sediment cover, and shorter actual cross-sea distance there. From the Penglaijiao to the Tuoji Island the water depth is only 20m on average, while the water depth from Tuoji Island to Daqin Island is 35~40 m, and from the Daqin Island to the Laotieshanjiao 50-55m on average. It is absolutely feasible for construction of a bridge system in the south. Our suggested scheme of "bridge-south and tunnel-north" is completely different from the alternative proposal which prefers to take the Beihuangcheng Island as the connection point for the bridge and the tunnel though they also agree to the idea of bridge-south and tunnel-north. We prefer to have the bridge - tunnel connection at the Tuoji Island, which is 7.05 km2. The Daqin Island can be the second choice of the connection place for the bridge and the tunnel. If the Tuoji Island is selected as the bridge-tunnel connection, the bridge will be 58km long and the tunnel is 55km, with the total up to 113 km.Upon the above consideration, it is estimated that 8~12 years is needed to complete the construction with a total cost of 100~120 billion RMB if the service life of the system is assumed as 100 years. The Bohai Sea, as a continental sea of China, has weaker stormy waves comparing to the East China Sea and the South China Sea. The impact of stormy wave on the bridge across the Bohai Strait is supposed to be larger than that on the Jiaozhou Bay Bridge, but almost the same as the Hangzhou Bay Bridge, even the water depth of Bohai Strait is deeper. It is estimated that there would be more than 60 windy and foggy days every year when the traffic will be suspended in the Bohai Strait, almost the same as the period and time on the two land ends nearby. Therefore, it will not bring too much traffic problems to the region. Anyway, the weather should not be the reason to deny the scheme of "bridge-south and tunnel-north". The cost for bridge building is lower in the shallower water area, and the engineering will also proceed easily and complete in a shorter time in this broad zone. Moreover, tunneling costs more, needs more complicated engineering operation and of course much longer time. In fact, the length of tunnel is the factor which will decide the time required by the whole project. The scheme of "tunnel only" claims that it has the reputation of "performance under all the weather condition", but the "tunnel", which is 125 km long totally, will cost 250 billion RMB, at least twice over the scheme of "bridge-south and tunnel-north", and need twice or even more time for construction. And the economic benefits can only be generated after the whole project completed. So "tunnel only" scheme is costly, time-consuming and inefficient, and thus unrealistic for the time being. The developing trend of this area shows that the transport by highway rises rapidly, as the transport by railway declines sharply, so highway has the priority over the railway as a more realistic consideration. In the proposed scheme of "bridge-south and tunnel-north", bridge-will be constructed only for highway, but the tunnels in the north, there might be two alternatives. If some of the technical problems, such as ventilation, can be solved, the tunnel in the north should take highway as the priority.If the problems cannot be solved, the option of railway has to be acceptable. The trains may bring vehicles through the tunnel, of course, it is less efficient than the highway tunnel which may bring vehicles running through directly. The reduced transport capacity can be compensated by ferry transportation.In conclusion, no matter which type of path is to be built, highway or railway or both, the optimum scheme is the system with bridge-south and tunnel-north, which will be economic, time-saving and efficient, with economic benefits produced during different construction stages. The south bridge should be designed and constructed according to a basic seismic intensity of Ⅷ and a typhoon attack of 12 degree and the associated stormy waves. The bridge pier should keep a distance as far as possible to faults and fault zones. The north tunnel should be designed according to the basic seismic intensity of Ⅶ. To sum up, the shallower water in the south is good for bridge construction, and the "bridge-south and tunnel-north" scheme will make a perfect cross-strait path; which will be really economic, time-saving and efficient, and benefits will be produced during each stages of construction.
-
表 1 渤海海峡跨海桥隧与国内两个著名跨海大桥的投资效益比较
Table 1. The comparison of investment benefits between the bridge-tunnel across the Bohai Strait and two other famous cross-sea bridges in China
大桥名称 总长度/km 实际跨海长度/km 投资/亿元 缩短交通距离/km 日均车流量 每年节约燃油费/亿元 回收成本年限(仅从节约燃油费计算) 渤海海峡跨海桥隧 预计113 106(沿岛群轴110) 预计1 200 1 600(按1 200计) 预计40 000 170.82 7.02 杭州湾跨海大桥 36 32 118 100 45 000 16.01 7.37 青岛胶州湾跨海大桥 35.4 26.75 99 30 30 000 3.20 30.94 表 2 不同距离的海底隧道修建用时及投资额度(以青岛胶州湾跨海隧道为例进行计算)
Table 2. The construction time and investment of undersea tunnels of different lengths (take the Jiaozhou Bay cross-sea tunnel as an example)
隧道距离/km及倍数 修建用时/年 投资额度/(亿元) 按倍数计 按q为1.2计 按倍数计 按q为1.2计 7.8 (1倍) 4.5 4.5 33 33 15.6(2倍) 9 9.9 66 72.6 23.4(3倍) 13.5 16.38 99 120.12 31.2(4倍) 18 24.16 132 177.14 39.0(5倍) 22.5 33.49 165 245.56 46.8(6倍) 27 44.69 198 327.67 54.6(7倍) 31.5 58.12 231 426.22 62.4(8倍) 36 74.25 264 544.47 70.2(9倍) 40.5 93.60 297 686.36 …… …… …… …… …… 124.8(16倍) 72 393.48 528 2 885.59 北隧(大钦岛方案)55 32 59 233 429 北隧(砣矶岛方案)70 40 93 296 684 全隧125 72 396 528 2 890 表 3 世界著名跨海隧道的修建用时及投资额度
Table 3. The tunneling time and investment of the famous sea-cross tunnels in the world
隧道名及长度/km 以日本修建速度计/年 以英法修建速度计/年 以青岛修建速度计/年 投资额度 备注 日本青函隧道54 24 7 000亿日元(约合当时人民币400亿元) 1988完成 英吉利海峡隧道53 8 150亿美元(约合当时人民币1 000亿元) 1994完成 青岛胶州湾隧道7.8 4.5 33亿元 2011完成 海峡通道北隧(大钦岛方案) 55 24 8 59 429亿元(以青岛隧道计) 根据世界3个隧道估算 海峡通道北隧(砣矶岛方案) 70 33 11 93 684亿元(以青岛隧道计) 根据世界3个隧道估算 海峡通道全隧方案125 64 22 396 2 890亿元(以青岛隧道计) 根据世界3个隧道估算 表 4 渤海海峡跨海通道的南桥费用核算
Table 4. The cost for bridge-in-south of the cross-strait path in Bohai Strait
桥隧名称 总长/km 实际跨海长度/km 总投资/亿元 平均造价/(亿元/km) 备注 青岛胶州湾跨海大桥 35.4 26.75 99 2.80 2011年6月30日建成通车 杭州湾跨海大桥 36 32 118 3.28 2008年5月1日建成通车 渤海海峡跨海桥隧的南桥(砣矶岛方案) 预计43 25.5(沿岛群轴线并加岛43) 131 3.04 以青岛、杭州湾跨海大桥平均单价计 渤海海峡跨海桥隧的南桥(砣矶岛方案) 预计43 25.5(沿岛群轴线并加岛43) 196 4.56 按平均价格的1.5倍计 渤海海峡跨海桥隧的南桥(大钦岛方案) 预计58 36(沿岛群轴线并加岛58) 176 3.04 以青岛、杭州湾跨海大桥平均单价计 渤海海峡跨海桥隧的南桥(大钦岛方案) 预计58 36(沿岛群轴线并加岛58) 352 6.07 按平均价格的2倍计(平均水深更大,故按2倍计) 表 5 渤海海峡跨海通道的北隧费用核算及跨海通道总费用
Table 5. The cost for tunnel-in-north of cross-strait path and the total cost of the path in Bohai Strait
桥隧名称 总长/km 实际跨海长度/km 总投资/亿元 平均造价/ (亿元/km) 备注 青岛胶州湾跨海隧道 7.8 3.95 33 4.23 2011年6月30日建成通车 渤海海峡跨海桥隧的北隧(砣矶岛) 预计70 67 684 9.77 以青岛胶州湾跨海隧道价格计,并以等比级数考虑了隧道加长的费用 渤海海峡跨海桥隧的北隧(砣矶岛) 预计70 67 1026 14.66 按上述价格的1.5倍计 渤海海峡跨海桥隧的北隧(大钦岛) 预计55 52 429 7.8 以青岛胶州湾跨海隧道价格计,并以等比级数考虑了隧道加长的费用 渤海海峡跨海桥隧的北隧(大钦岛) 预计55 52 644 11.7 按上述价格的1.5倍计 渤海海峡跨海南桥北隧(砣矶岛)合计 预计113 1222 桥隧价格各按1.5倍计的桥隧投资总合计 渤海海峡跨海南桥北隧(大钦岛)合计 预计113 996 修桥价格按2倍,修隧价格按1.5倍计的桥隧投资总合计 -
[1] 尹延鸿.天然的海上大花园——走进长山列岛国家地质公园[J].国土资源科普与文化, 2015(2): 42-53. http://r.cnki.net/knavi/journal/search/ILUJ/GTKW?naviid=
YIN Yanhong. The natural park on the sea-coming into the Changshanliedao national geological park[J]. Scientific and Cultural Popularization of Land and Resources, 2015(2): 42-53. http://r.cnki.net/knavi/journal/search/ILUJ/GTKW?naviid=
[2] 尹延鸿.对河北唐山曹妃甸浅滩大面积填海的思考[J].海洋地质动态, 2007, 23(3): 1-10. doi: 10.3969/j.issn.1009-2722.2007.03.001
YIN Yanhong. Some questions about large-area marine reclamation land in Caofeidian bank, Tangshan of Hebei Province[J]. Marine Geology Letters, 2007, 23(3): 1-10. doi: 10.3969/j.issn.1009-2722.2007.03.001
[3] 尹延鸿.曹妃甸浅滩潮道保护意义及曹妃甸新老填海规划对比分析[J].现代地质, 2009, 23(2): 200-209. doi: 10.3969/j.issn.1000-8527.2009.02.002
YIN Yanhong. The significance of protection of the Caofeidian shoal tidal channel and comparison of the new Caofeidian plan of sea reclamation land to the old one[J]. Geoscience, 2009, 23(2): 200-209. doi: 10.3969/j.issn.1000-8527.2009.02.002
[4] 尹延鸿, 高茂生, 尹聪.河北唐山曹妃甸浅滩潮道(纳潮河)开通过程及开通意义[J].海洋地质前沿, 2017, 33(3): 40-46. doi: 10.16028/j.1009-2722.2017.03007
YIN Yanhong, GAO Maosheng, YIN Cong. Opening up of the tidal inlet (Nachao River) on Caofeidian Shoal in Tangshan, Hebei Province and its significance[J]. Marine Geology Frontiers, 2017, 33(3): 40-46. doi: 10.16028/j.1009-2722.2017.03007
[5] 尹延鸿, 褚宏宪, 李绍全, 等.曹妃甸填海工程阻断浅滩潮道初期老龙沟深槽的地形变化[J].海洋地质前沿, 2011, 27(5): 1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt201105001
YIN Yanhong, CHU Hongxian, LI Shaoquan, et al. An analysis of the topographical change of Laolonggou deep trough in the initial stage of Caofeidian reclamation project after blocking the shoal tidal channel[J]. Marine Geology Frontiers, 2011, 27(5): 1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt201105001
[6] 尹聪, 褚宏宪, 尹延鸿.曹妃甸填海工程阻断浅滩潮道中期老龙沟深槽的地形变化特征[J].海洋地质前沿, 2012, 28(5): 15-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt201205003
YIN Cong, CHU Hongxian, YIN Yanhong. Topographic change of Laolonggou deep trough in the middle stage of Caofeidian reclamation project for blocking the shoal tidal channel[J]. Marine Geology Frontiers, 2012, 28(5): 15-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt201205003
[7] 尹延鸿, 白伟明, 褚宏宪, 等.曹妃甸填海工程阻断浅滩潮道后期老龙沟深槽的地形演化趋势[J].海洋地质前沿, 2012, 28(12): 1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt201212001
YIN Yanhong, BAI Weiming, CHU Hongxian, et al. Recent topographic change of Laolonggou deep trough after Caofeidian Reclamation project blocking the shoal tidal channel[J]. Marine Geology Frontiers, 2012, 28(12): 1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt201212001
[8] 尹延鸿.山东省海岸带不同岸段的填海造地适宜性分析及需要注意的问题[J].海洋地质动态, 2010, 26(12): 35-39.
YIN Yanhong. A discussion on land reclamation along the coast of Shandong and its problems[J]. Marine Geology Letters, 2010, 26(12): 35-39.
[9] 尹延鸿, 尹聪. "上升效益极限填海面积"概念的提出与讨论[J].海洋地质前沿, 2014, 30(6): 47-50. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt201406008
YIN Yanhong, YIN Cong. The new concept of "benefit limited reclamation area"[J]. Marine Geology Frontiers, 2014, 30(6): 47-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt201406008
[10] 尹延鸿, 尹聪.围海及填海造地的起因、发展及问题[J].自然杂志, 2014, 36(6): 437-444. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzz201406010
YIN Yanhong, YIN Cong. The reasons, development and problems of the land reclamation[J]. Chinese Journal of Nature, 2014, 36(6): 437-444. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzz201406010
[11] 中国科学院海洋研究所海洋地质研究室.渤海地质[M].北京: 科学出版社, 1985.
Institute of Oceanology, Chinese Academy of Sciences. Bohai Geology[M]. Beijing: Ocean Press, 1985.
[12] 赵铁虎, 高小惠, 齐君.渤海海峡跨海通道区浅地层结构探测[J].海洋测绘, 2014, 34(2): 38-42. doi: 10.3969/j.issn.1671-3044.2014.02.011
ZHAO Tiehu, GAO Xiaohui, QI Jun. Shallow Structure characteristics in trans-sea channel of Bohai Strait[J]. Hydrographic Surveying and Charting, 2014, 34(2): 38-42. doi: 10.3969/j.issn.1671-3044.2014.02.011
[13] 陈晓辉, 张训华, 李日辉, 等.渤海海峡海域灾害地质研究[J].海洋地质与第四纪地质, 2014, 34(1): 11-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201401002
CHEN Xiaohui, ZHANG Xunhua, LI Rihui, et al. A preliminary study on hazardous geology in the Bohai Strait[J]. Marine Geology and Quaternary Geology, 2014, 34(1): 11-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201401002
[14] Liu J, Saito Y, Wang H, et al. Sedimentary evolution of the Holocene subaqueous Clinoform off the Shandong Peninsula in the Yellow Sea[J]. Marine Geology, 2007, 236(3-4): 165-187. doi: 10.1016/j.margeo.2006.10.031
[15] 蒋东辉, 高抒.渤海海峡潮流底应力与沉积物分布的关系[J].沉积学报, 2002, 20(4): 663-667. doi: 10.3969/j.issn.1000-0550.2002.04.021
JIANG Donghui, GAO Shu. Relationship between the tidally-induced near-bed shear stress and the distribution of surficial sediments in The Bohai Strait[J]. Acta Sedimentologica Sinica, 2002, 20(4): 663-667. doi: 10.3969/j.issn.1000-0550.2002.04.021
[16] 万天丰, 朱鸿, 赵磊, 等.郯庐断裂带的形成与演化:综述[J].现代地质, 1996, 10(2): 159-168. http://d.old.wanfangdata.com.cn/Periodical/dzlxxb200601007
WAN Tianfeng, ZHU Hong, ZHAO Lei, et al. Formation and evolution of the Tancheng-Lujiang Fault Zone: a review[J]. Geoscience, 1996, 10(2): 159-168. http://d.old.wanfangdata.com.cn/Periodical/dzlxxb200601007
[17] Lin A M, Miyata T, Wan T F. Tectonic characteristics of the central segment of the Tancheng-Lujiang fault zone, Shandong Peninsula, Eastern China[J]. Tectonophysics, 1998, 293(1-2): 85-104. doi: 10.1016/S0040-1951(98)00087-0
[18] Wan T F. Intraplate Deformation, Tectonic Stress Field and Their Application for Eastern China in Meso-Cenozoic[M]. Wuhan: China University of Geosciences Press, 1994: 1-156.
[19] 万天丰.中国大地构造学纲要[M].北京:地质出版社, 2004: 1-387.
WAN Tianfeng. Outlines of China Tectonics[M]. Beijing: Geological Publishing House, 2004: 1-387.
[20] Wan T F. The Tectonics of China: Data, Maps and Evolution[M]. Beijing: Higher Education Press, 2011: 1-501.
[21] Wan T F. Recent tectonic stress field, active faults and geothermal fields (hot-water type) in China[J]. Journal of Volcanology and Geothermal Research, 1984, 22(3-4): 287-300. doi: 10.1016/0377-0273(84)90006-4
[22] Wan T F, Zhu H. Cretaceous-early Eocene tectonic stress field in China[J]. Acta Geologica Sinica, 1989, 2(3): 227-239. doi: 10.1111/j.1755-6724.1989.mp2003002.x
[23] Wan T F. Thought on the Research of Plate Tectonic Dynamics[M].1994 Annual Report, The Laboratory of Lithosphere Tectonics and Its Dynamics (MGMR). Beijing: Seismological Publishing House, 1995: 52-53.
[24] 李西双, 刘保华, 赵月霞, 等.渤海海域晚更新世—全新世的活动构造[J].海洋学报, 2010, 32(5): 52-59. http://www.hyxb.org.cn/aos/ch/reader/key_query.aspx
LI Xishuang, LIU Baohua, ZHAO Yuexia, et al. Late Pleistocene-Holocene Submarine active structures in the Bohai Sea[J]. Acta Oceanologica Sincia, 2010, 32(5): 52-59. http://www.hyxb.org.cn/aos/ch/reader/key_query.aspx
[25] 赵铁虎, 齐君, 梅赛, 等.渤海海峡跨海通道地质条件调查与分析[J].科技导报, 2016, 34(21): 39-47. http://www.kjdb.org/CN/article/searchArticleResultByKeyword.do
ZHAO Tiehu, QI Jun, MEI Sai, et al, Survey and analysis of the Geological conditions in trans-sea channel of Bohai strait[J]. Science and Technology Review, 2016, 34(21): 39-47. http://www.kjdb.org/CN/article/searchArticleResultByKeyword.do
[26] 国家地震局.中国地震烈度区划图(1: 400万)[M].北京: 地震出版社, 1990.
China Earthquake Administration. Earthquake Intensity Zoning Map of China (1/4, 000, 000)[M]. Beijing: Seismological Press, 1990.
[27] 胡政, 丁东, 冯志泽.渤海南部晚第四纪地层和活动构造[M].中国地震学会地震地质专业委员会.中国活动断层研究.北京:地震出版社, 1994.
HU Zheng, DING Dong, FENG Zhize. The Late Quaternary Strata and Active Tectonicsin the South of Bohai Sea[M].Seismological Society of China, Seismological Geology, Specialized Committee. Research on the Active Fault in China. Beijing: Seismological Press, 1994.
[28] 李家灵, 晁洪太, 崔昭文, 等.郯庐活断层的分段及其大震危险性分析[J].地震地质, 1994, 16(2): 121-126. http://www.dzdz.ac.cn/CN/article/searchArticle.do
LI Jialing, CHAO Hongtai, CUI Zhaowen, et al. Segmentation of active fault along the Tancheng-Lujiang fault zone and evaluation of strong earthquake risk[J]. Seismology and Geology, 1994, 16(2): 121-126. http://www.dzdz.ac.cn/CN/article/searchArticle.do
[29] 吕悦军, 彭艳菊, 沙海军.渤海及邻区地震活动环境[D]//中国地震局地壳应力研究所.地壳构造与地壳应力文集.北京: 中国地震局地壳应力研究所, 2003: 38-44.
LV Yuejun, PENG Yanju, SHA Haijun. Seismicity environment in Bohai and its adjacent regions[D]//The Institute of Crustal Dynamics, China Earthquake Adminstration. Bulletin of the Institute of Crustal Dynamics. Beijing: The Institute of Crustal Dynamics, China Earthquake Administration, 2003: 38-44.
[30] 强祖基, 叶士忠. 1668年山东莒县-郯城8½级大震区的活动断裂特征[J].地震地质, 1985, 7(2): 19-26.
QIANG Zuji, YE Shizhong. The characteristics of the active faults in the 1668 great earthquake (m = 81/2) area, Juxian-Tancheng, Shandong Province[J]. Seismology and Geology, 1985, 7(2): 19-26.
[31] 赵兴兰, 魏光兴, 郭爱香, 等.渤海地区近期地震活动特征及其趋势分析[J].地震学刊, 1990(3): 56-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000378678
ZHAO Xinglan, WEI Guangxing, GUO Aixiang, et al. The characteristics of the recent seismicity in the Bohai Sea region and the analysis of the prospective seismicity in the region[J]. Journal of Seismology, 1990(3): 56-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000378678
[32] 王梦恕, 宋克志.渤海湾跨海通道建设的紧迫性及现实条件和初步方案[J].北京交通大学学报, 2013, 37(1): 1-10. doi: 10.3969/j.issn.1673-0291.2013.01.001
WANG Mengshu, SONG Kezhi. Urgency and current constructions condition and preliminary scheme of Bohai strait cross-sea channel[J]. Journal of Beijing Jiaotong University, 2013, 37(1): 1-10. doi: 10.3969/j.issn.1673-0291.2013.01.001
[33] 宋克志, 邓建俊, 王梦恕.烟大渤海海峡隧道的可行性研究初探[J].地下空间与工程学报, 2007, 4(1): 121-129. doi: 10.3969/j.issn.1673-0836.2008.01.024
SONG Kezhi, DENG Jianjun, WANG Mengshu. Feasibility study on Bohai Strait tunnel connecting Yantai and Dalian[J]. Chinese Journal of Underground Space and Engineering, 2007, 4(1): 121-129. doi: 10.3969/j.issn.1673-0836.2008.01.024
[34] 宋克志, 王梦恕.烟大渤海海峡隧道的可行性研究探讨[J].现代隧道技术, 2006, 43(6): 1-8. doi: 10.3969/j.issn.1009-6582.2006.06.001
SONG Kezhi, WANG Mengshu. Feasibility study on Bohai channel tunnel connecting Yantai and Dalian[J]. Modern Tunnelling Technology, 2006, 43(6): 1-8. doi: 10.3969/j.issn.1009-6582.2006.06.001
[35] 卢光杰, 田宝红.渤海海峡跨海通道建设方案研究[J].铁道标准设计, 2013(8): 37-41. doi: 10.3969/j.issn.1004-2954.2013.08.009
LU Guangjie, TIAN Baohong. Research on development scheme of sea-crossing Railway through the Bohai channel[J]. Railway Standard Design, 2013(8): 37-41. doi: 10.3969/j.issn.1004-2954.2013.08.009
[36] 王梦恕.水下交通隧道发展现状与技术难题—兼论"台湾海峡海底铁路隧道建设方案"[J].岩石力学与工程学报, 2008, 27(11): 2161-2172. doi: 10.3321/j.issn:1000-6915.2008.11.001
WANG Mengshu. Current developments and technical issues of underwater traffic tunnel-discussion on construction scheme of Taiwan Strait undersea railway tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(11): 2161-2172. doi: 10.3321/j.issn:1000-6915.2008.11.001
[37] 谭忠盛, 王梦恕.渤海海峡跨海隧道方案研究[J].中国工程科学, 2013, 15(12): 45-51. doi: 10.3969/j.issn.1009-1742.2013.12.007
TAN Zhongsheng, WANG Mengshu. Scheme study of Bohai Strait cross-sea tunnel[J]. Engineering Sciences, 2013, 15(12): 45-51. doi: 10.3969/j.issn.1009-1742.2013.12.007
[38] 魏礼群, 柳新华.渤海海峡跨海通道若干重大问题研究[M]. 2版.北京:经济科学出版社, 2009.
WEI Liqun, LIU Xinhua. Research on Several Key Problems for Bohai Trans-Strait Passageway[M]. 2nd ed. Beijing: Economic Science Press, 2009.
[39] 谭忠盛, 吴永胜, 万飞.渤海海峡跨海工程自然条件分析[J].中国工程科学, 2013, 15(12): 32-38. doi: 10.3969/j.issn.1009-1742.2013.12.005
TAN Zhongsheng, WU Yongsheng, WAN Fei. Analysis of natural condition for Bohai Strait cross-sea engineering[J]. Engineering Sciences, 2103, 15(12): 32-38. doi: 10.3969/j.issn.1009-1742.2013.12.005
[40] 魏礼群, 柳新华, 刘良忠.渤海海峡跨海通道若干重大问题研究[M].北京:经济科学出版社, 2007.
WEI Liqun, LIU Xinhua, LIU Liangzhong. Research Several Key Problems for Bohai Trans-strait Passage[M]. Beijing: Economy Science Press, 2007.
[41] 柳新华, 刘良忠, 侯鲜明.国内外跨海通道发展百年回顾与前瞻[J].科技导报, 2006, 24(11): 78-83. doi: 10.3321/j.issn:1000-7857.2006.11.022
LIU Xinhua, LIU Liangzhong, HOU Xianming. A century review and prospect of the trans-straits passages at home and abroad[J]. Science and Technology Review, 2006, 24(11): 78-83. doi: 10.3321/j.issn:1000-7857.2006.11.022
[42] 魏礼群, 柳新华.渤海海峡跨海通道研究[M]. 2版.北京:经济科学出版社, 2009: 85-87.
WEI Liqun, LIU Xinhua. Researchon Bohai Trans-strait Passage[M]. 2nd ed. Beijing: Economy Science Press, 2009: 85-87.
[43] 宋克志, 张广东, 李传明.渤海海峡跨海通道可视化仿真建模研究[J].公路交通科技, 2008, 25(7): 107-112. doi: 10.3969/j.issn.1002-0268.2008.07.021
SONG Kezhi, ZHANG Guangdong, LI Chuanming. Visualization simulation modeling for trans-sea channels of Bohai Strait[J]. Journal of Highway and Transportation Research and Development, 2008, 25(7): 107-112. doi: 10.3969/j.issn.1002-0268.2008.07.021
[44] 王梦恕.台湾海峡海底铁路隧道建设方案[J].隧道建设, 2008, 28(5): 517-526. doi: 10.3969/j.issn.1674-0696.2011.supp2.008
WANG Mengshu. Construction scheme of Taiwan strait sub-sea railway tunnel[J]. Tunnel Construction, 2008, 28(5): 517-526. doi: 10.3969/j.issn.1674-0696.2011.supp2.008
[45] 洪开荣.水下盾构隧道硬岩处理与对接技术[J].隧道建设, 2012, 32(3): 361-365. doi: 10.3973/j.issn.1672-741X.2012.03.018
HONG Kairong. Case study on hard rock treatment technology and shield docking technology in boring of underwater tunnels[J]. Tunnel Construction, 2012, 32(3): 361-365. doi: 10.3973/j.issn.1672-741X.2012.03.018
[46] 王梦恕.不同地层条件下的盾构与TBM选型[J].隧道建设, 2006, 26(2): 1-3, 8. doi: 10.3969/j.issn.1672-741X.2006.02.001
WANG Mengshu. Type selection of shield TBMs and hard rock TBMs for different geological conditions[J]. Tunnel Construction, 2006, 26(2): 1-3, 8. doi: 10.3969/j.issn.1672-741X.2006.02.001
[47] Wang X J, Liu G. Research on strait crossing solution of submerged floating tunnel (underwater continuous girder bridge)[J]. Procedia Engineering, 2016, 166: 76-82. doi: 10.1016/j.proeng.2016.11.567
[48] 王梦恕.水下交通隧道的设计与施工[J].中国工程科学, 2009, 11(7): 4-10. doi: 10.3969/j.issn.1009-1742.2009.07.001
WANG Mengshu. Design and construction technology of underwater tunnel[J]. China Engineering Sciences, 2009, 11(7): 4-10. doi: 10.3969/j.issn.1009-1742.2009.07.001
[49] 张志刚, 刘洪洲.公路沉管隧道的发展及其关键技术[J].隧道建设, 2013, 33(5): 343-347. doi: 10.3973/j.issn.1672-741X.2013.05.002
ZHANG Zhigang, LIU Hongzhou. Development and key technologies of immersed highway tunnels[J]. Tunnel Construction, 2013, 33(5): 343-347. doi: 10.3973/j.issn.1672-741X.2013.05.002
[50] 管敏鑫.沉管隧道在越江工程中的地位以及有关的新认识[J].现代隧道技术, 2004, 41(1): 1-4, 9. doi: 10.3969/j.issn.1009-6582.2004.01.001
GUAN Minxin. The role of the tunneling by immersed tube method in the river-crossing engineering and some related new cognitions[J]. Modern Tunnelling Technology, 2004, 41(1): 1-4, 9. doi: 10.3969/j.issn.1009-6582.2004.01.001
[51] 项贻强, 薛静平.悬浮隧道在国内外的研究[J].中外公路, 2002, 22(6): 49-52. doi: 10.3969/j.issn.1671-2579.2002.06.015
XIANG Yiqiang, XUE Jingping. The research of floating tunnel in China and foreign countries[J]. Journal of China and Foreign Highway, 2002, 22(6): 49-52. doi: 10.3969/j.issn.1671-2579.2002.06.015