西南印度洋中脊扩张轴部(34.9°S)西翼沉积物地球化学分析及物源探讨

林震, 于洪军, 徐兴永, 杨继超, 易亮, 付腾飞, 吕文哲. 西南印度洋中脊扩张轴部(34.9°S)西翼沉积物地球化学分析及物源探讨[J]. 海洋地质与第四纪地质, 2018, 38(5): 14-29. doi: 10.16562/j.cnki.0256-1492.2018.05.002
引用本文: 林震, 于洪军, 徐兴永, 杨继超, 易亮, 付腾飞, 吕文哲. 西南印度洋中脊扩张轴部(34.9°S)西翼沉积物地球化学分析及物源探讨[J]. 海洋地质与第四纪地质, 2018, 38(5): 14-29. doi: 10.16562/j.cnki.0256-1492.2018.05.002
LIN Zhen, YU Hongjun, XU Xingyong, YANG Jichao, YI Liang, FU Tengfei, LV Wenzhe. Geochemistry and provenance of the sediment from the west flank of the spreading southwest Indian Oceanic Ridge (34.9°S)[J]. Marine Geology & Quaternary Geology, 2018, 38(5): 14-29. doi: 10.16562/j.cnki.0256-1492.2018.05.002
Citation: LIN Zhen, YU Hongjun, XU Xingyong, YANG Jichao, YI Liang, FU Tengfei, LV Wenzhe. Geochemistry and provenance of the sediment from the west flank of the spreading southwest Indian Oceanic Ridge (34.9°S)[J]. Marine Geology & Quaternary Geology, 2018, 38(5): 14-29. doi: 10.16562/j.cnki.0256-1492.2018.05.002

西南印度洋中脊扩张轴部(34.9°S)西翼沉积物地球化学分析及物源探讨

  • 基金项目:
    国家重点基础研究发展计划“超深渊生物群落及其与关键环境要素的相互作用机制研究”(2015CB755901)
详细信息
    作者简介: 林震(1990—),男,博士研究生,主要从事深海沉积物研究,E-mail:linz@sidsse.an.cn
  • 中图分类号: P736.4

  • 蔡秋荣编辑

Geochemistry and provenance of the sediment from the west flank of the spreading southwest Indian Oceanic Ridge (34.9°S)

  • 西南印度洋中脊沉积物来源广泛,是区域海洋环境演化的记录器,对其沉积物特征及物源研究是区域古海洋研究的基础。对采自西南印度洋中脊扩张轴部(34.9°S)西翼的重力柱沉积物样品进行总碳、总有机碳、生物硅、主量元素、微量及稀土元素测试, 测试结果显示,样品中生物成因组分为沉积物的主要组成,主要包括碳酸盐和二氧化硅;主微量元素除了Ca、Sr与LOI外,其余元素的分布趋势基本一致,且相关系数基本大于0.8。结合不同生物组分特点进行分析计算,获得了沉积物中各生物组分的含量。去除生物成因组分重新计算了非生物成因元素含量,通过潜在物源及相应地球化学指标对比分析,发现非生物成因组分主要由非洲南部风成陆源物质组成,含少量洋中脊硫化物与结壳物质。

  • 加载中
  • 图 1  采样位置及本文引用数据取样位置分布图(根据全球30位数据利用Arcgis软件作图)

    Figure 1. 

    图 2  采样位置图(图中区域为图 1中红色方框区域)

    Figure 2. 

    图 3  主量元素含量随取样深度的分布曲线

    Figure 3. 

    图 4  微量与稀土元素总量(×10-6)随取样深度变化分布曲线

    Figure 4. 

    图 5  主量元素/TiO2分布散点图

    Figure 5. 

    图 6  样品化学成分聚类结果分布

    Figure 6. 

    图 7  生物沉积组分变化分布图

    Figure 7. 

    图 8  非生物组分主量元素与上陆壳(UCC)比值(据文献[32])

    Figure 8. 

    图 9  样品与PAAS、UCC球粒陨石标准化稀土元素模式分布

    Figure 9. 

    图 10  来自澳大利亚样品与非洲南部样品的物质稀土元素球粒陨石标准化分布模式

    Figure 10. 

    图 11  印度洋表层及次表层流分布(据文献[39])

    Figure 11. 

    图 12  洋脊原生物质稀土元素模式球粒陨石标准化分布

    Figure 12. 

    表 1  主量元素数据(%)

    Table 1.  Data of major elements

    取样层位/cm Al2O3 BaO CaO Cl TFe2O3 K2O MgO MnO Na2O P2O5 SiO2 SO3 SrO TiO2 LOI
    0~10 3.64 0.08 40.7 1.50 1.95 0.61 0.85 0.20 1.69 0.12 13.55 0.29 0.16 0.22 35.42
    10~20 3.52 0.12 41.1 1.46 1.87 0.65 0.84 0.21 1.68 0.10 13.88 0.30 0.16 0.23 35.12
    20~30 3.41 0.09 41.7 1.77 1.84 0.62 0.83 0.17 1.86 0.10 12.99 0.32 0.17 0.22 35.64
    30~40 3.91 0.12 39.8 1.54 2.08 0.73 0.94 0.20 1.96 0.10 15.56 0.31 0.16 0.25 34.54
    40~50 4.46 0.13 37.7 1.76 2.40 0.81 1.06 0.22 2.07 0.12 17.64 0.33 0.15 0.29 33.19
    50~60 6.35 0.19 29.7 2.09 3.45 1.13 1.46 0.33 2.61 0.19 24.61 0.40 0.12 0.41 28.52
    60~70 6.46 0.20 29.9 2.22 3.65 1.14 1.58 0.39 2.72 0.20 24.25 0.43 0.13 0.43 29.18
    70~80 4.63 0.15 37.3 1.94 2.57 0.83 1.15 0.28 2.21 0.15 17.58 0.37 0.15 0.31 32.37
    80~90 5.79 0.15 32.7 2.14 3.43 1.04 1.46 0.34 2.45 0.22 21.03 0.39 0.12 0.37 31.12
    90~100 5.53 0.15 34.6 1.94 3.10 0.99 1.38 0.35 2.29 0.22 19.79 0.36 0.13 0.34 31.39
    100~110 4.95 0.13 37.1 2.00 2.78 0.87 1.26 0.33 2.14 0.21 17.37 0.35 0.14 0.30 32.67
    110~120 3.88 0.11 41.0 1.63 2.16 0.70 1.00 0.23 1.82 0.16 13.61 0.30 0.15 0.23 34.84
    120~130 3.41 0.09 42.9 1.64 1.89 0.61 0.88 0.19 1.68 0.14 11.78 0.30 0.15 0.20 36.12
    130~140 3.36 0.08 43.4 1.50 1.82 0.60 0.88 0.19 1.62 0.13 11.51 0.27 0.15 0.20 36.34
    140~150 3.73 0.09 42.2 1.48 2.02 0.66 0.97 0.20 1.68 0.14 12.61 0.29 0.15 0.22 35.73
    150~160 3.30 0.08 43.8 1.43 1.78 0.60 0.87 0.18 1.56 0.11 11.08 0.27 0.16 0.20 36.59
    160~170 7.39 0.25 25.7 2.11 4.01 1.33 1.76 0.44 2.91 0.21 28.84 0.46 0.12 0.48 26.73
    170~180 4.60 0.15 37.4 1.97 2.50 0.86 1.18 0.26 2.24 0.12 18.06 0.37 0.16 0.30 31.91
    180~190 3.11 0.10 42.8 1.65 1.69 0.59 0.82 0.18 1.76 0.10 12.40 0.31 0.17 0.20 36.48
    190~200 3.91 0.14 38.7 1.91 2.13 0.74 0.99 0.20 2.04 0.14 16.04 0.35 0.16 0.25 33.64
    200~210 6.21 0.20 30.8 2.02 3.47 1.11 1.48 0.33 2.55 0.21 24.13 0.41 0.13 0.39 29.20
    210~220 4.38 0.12 38.0 1.78 2.49 0.79 1.09 0.25 2.05 0.16 16.23 0.33 0.15 0.28 34.18
    220~230 4.27 0.11 38.9 1.68 2.40 0.77 1.07 0.24 1.99 0.15 15.79 0.32 0.15 0.27 34.13
    230~240 5.15 0.14 35.1 1.90 2.95 0.94 1.30 0.30 2.27 0.18 19.11 0.36 0.14 0.33 32.31
    下载: 导出CSV

    表 2  微量元素(包括稀土元素)数据(×10-6)

    Table 2.  Data of race elements (including rare earth elements)

    取样层位/cm Ba Zr Nb Rb Sr Th U V Y Cs Ga Hf La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
    0~10 785 40 3.9 21.2 1320 3.86 0.55 30 23.3 1.34 5.4 1.0 17.5 30.6 4.47 18.3 3.92 0.99 3.95 0.66 3.80 0.79 2.19 0.32 2.01 0.30
    10~20 1045 39 3.8 21.2 1320 3.53 0.52 29 21.5 1.46 5.3 1.0 16.7 27.1 4.17 17.1 3.67 0.92 3.84 0.56 3.49 0.72 1.98 0.29 1.82 0.27
    20~30 839 37 3.8 21.7 1345 3.58 0.49 34 23.2 1.41 5.5 1.0 17.4 28.0 4.33 17.2 3.96 0.97 3.93 0.59 3.71 0.76 2.05 0.29 1.82 0.28
    30~40 1090 44 4.4 23.7 1280 4.13 0.55 38 24.4 1.55 6.5 1.1 18.6 30.8 4.86 19.3 4.24 1.06 4.39 0.65 3.96 0.82 2.25 0.32 1.94 0.29
    40~50 1165 49 5.0 27.5 1205 4.74 0.60 41 28.0 1.84 7.4 1.2 21.4 35.6 5.47 22.0 4.61 1.17 5.03 0.76 4.53 0.91 2.44 0.36 2.23 0.34
    50~60 1670 74 7.5 40.3 1005 7.14 0.88 60 40.4 2.62 11.2 1.9 30.1 53.2 8.04 32.0 7.22 1.82 7.36 1.09 6.71 1.41 3.84 0.53 3.28 0.50
    60~70 1680 77 7.6 40.5 1050 7.39 0.90 65 45.1 2.51 11.5 1.9 33.5 59.3 8.84 34.6 7.79 1.96 7.78 1.23 7.39 1.48 3.98 0.59 3.49 0.52
    70~80 1305 54 5.3 30.5 1320 5.57 0.72 40 34.6 1.83 7.5 1.4 26.6 45.9 6.70 27.0 5.52 1.45 5.89 0.85 5.27 1.07 3.02 0.42 2.61 0.38
    80~90 1410 70 6.5 40.9 1140 7.46 0.90 52 49.8 2.51 10.3 1.7 35.5 59.6 9.00 36.0 7.75 2.05 8.20 1.16 7.57 1.52 4.35 0.64 3.78 0.56
    90~100 1285 64 5.8 36.9 1110 6.57 0.83 50 44.3 2.26 9.1 1.5 32.0 51.6 8.07 32.9 6.71 1.82 7.46 1.04 7.16 1.32 3.82 0.53 3.26 0.49
    100~110 1260 59 5.5 34.7 1245 6.48 0.78 48 45.4 2.08 9.4 1.4 33.7 52.4 8.31 33.4 6.88 1.90 7.55 1.07 7.19 1.38 3.79 0.58 3.44 0.51
    110~120 1080 49 4.4 28.5 1385 5.10 0.67 41 36.9 1.72 7.8 1.1 26.8 41.9 6.58 26.8 5.34 1.42 5.98 0.84 5.64 1.15 3.15 0.44 2.61 0.39
    120~130 916 41 3.6 24.6 1410 4.32 0.58 32 33.2 1.49 7.0 0.9 23.8 36.1 5.97 24.0 4.70 1.23 5.25 0.79 4.96 0.98 2.72 0.39 2.41 0.35
    130~140 795 39 3.6 24.5 1380 4.06 0.53 32 29.9 1.45 6.7 0.9 21.9 34.1 5.40 21.6 4.28 1.12 4.87 0.68 4.51 0.90 2.41 0.35 2.10 0.30
    140~150 766 37 3.4 24.1 1155 4.02 0.51 22 27.1 1.41 5.4 1.0 19.9 31.5 5.03 20.3 4.36 1.08 4.64 0.70 4.18 0.88 2.38 0.35 2.25 0.33
    150~160 726 35 3.1 22.4 1255 3.63 0.47 22 25.2 1.35 4.9 0.9 19.4 29.7 4.81 19.5 3.92 1.04 4.46 0.66 3.91 0.81 2.26 0.32 1.99 0.30
    160~170 2010 81 7.7 46.1 909 7.65 0.97 62 42.2 2.83 11.5 2.1 32.5 58.7 8.22 33.6 6.89 1.77 7.59 1.12 6.87 1.35 3.72 0.54 3.27 0.48
    170~180 1285 49 4.6 29.9 1290 4.54 0.61 40 26.5 1.74 7.3 1.4 22.7 36.1 5.52 22.7 4.78 1.22 4.65 0.73 4.25 0.88 2.40 0.34 2.11 0.32
    180~190 904 32 3.1 20.0 1365 3.23 0.43 31 21.7 1.21 5.3 0.8 17.6 25.3 4.26 16.9 3.75 0.86 3.73 0.55 3.37 0.71 1.91 0.28 1.71 0.26
    190~200 1305 45 4.2 26.2 1355 4.31 0.56 44 27.5 1.58 7.4 1.1 22.5 35.2 5.71 23.4 5.00 1.20 5.03 0.74 4.47 0.88 2.36 0.34 2.10 0.32
    200~210 1810 72 6.8 42.0 1085 7.09 0.86 54 45.0 2.44 11.1 1.8 33.8 56.8 8.67 34.3 7.70 1.87 7.66 1.20 6.93 1.43 3.86 0.54 3.24 0.49
    210~220 1110 46 4.8 29.3 1215 5.12 0.63 53 33.9 1.78 7.3 1.0 24.8 40.0 6.15 25.3 5.54 1.42 5.48 0.82 5.19 1.09 3.07 0.44 2.65 0.41
    220~230 1075 43 4.4 27.3 1215 5.11 0.61 45 32.4 1.70 6.7 1.0 23.8 38.4 5.98 25.0 5.65 1.27 5.48 0.78 4.93 1.00 2.94 0.41 2.56 0.37
    230-240 1320 56 5.5 34.6 1145 6.40 0.76 51 41.7 2.13 8.9 1.4 29.4 47.9 7.65 31.6 6.88 1.68 7.21 0.99 6.18 1.26 3.69 0.55 3.21 0.48
    下载: 导出CSV

    表 3  主微量及稀土元素相关系数分布

    Table 3.  The correlated coefficient of major and trace elements

    CaO Al2O3 Cl TFe2O3 K2O MgO MnO Na2O P2O5 SiO2 SO3 TiO2 LOI Ba Cs Ga Hf Nb Rb Sr Th U V Y Zr ΣrIE
    CaO 1.00
    Al2O3 -0.99 1.00
    Cl -0.87 0.86 1.00
    TFe2O3 -0.98 0.99 0.86 1.00
    K2O -0.97 0.99 0.86 0.98 1.00
    MgO -0.95 0.98 0.87 0.99 0.99 1.00
    MnO -0.84 0.87 0.79 0.88 0.87 0.89 1.00
    Na2O -0.98 0.97 0.90 0.96 0.96 0.94 0.85 1.00
    P2O5 -0.70 0.74 0.66 0.79 0.73 0.77 0.65 0.69 1.00
    SiO2 -1.00 0.98 0.86 0.97 0.97 0.95 0.84 0.99 0.67 1.00
    SO3 -0.85 0.85 0.84 0.84 0.85 0.87 0.87 0.86 0.58 0.85 1.00
    TiO2 -0.96 0.96 0.85 0.96 0.96 0.96 0.80 0.94 0.72 0.95 0.79 1.00
    LOI 0.99 -0.98 -0.88 -0.96 -0.98 -0.95 -0.86 -0.98 -0.68 -0.99 -0.88 -0.94 1.00
    Ba -0.96 0.94 0.86 0.93 0.93 0.91 0.79 0.96 0.67 0.97 0.87 0.91 -0.97 1.00
    Cs -0.96 0.98 0.85 0.98 0.96 0.97 0.85 0.94 0.78 0.95 0.82 0.94 -0.95 0.92 1.00
    Ga -0.93 0.95 0.87 0.95 0.93 0.95 0.82 0.91 0.76 0.92 0.81 0.89 -0.93 0.92 0.96 1.00
    Hf -0.97 0.98 0.87 0.97 0.96 0.96 0.88 0.96 0.67 0.97 0.88 0.93 -0.98 0.94 0.96 0.93 1.00
    Nb -0.98 0.98 0.87 0.98 0.95 0.95 0.84 0.96 0.76 0.97 0.81 0.94 -0.97 0.94 0.98 0.96 0.97 1.00
    Rb -0.95 0.98 0.86 0.98 0.97 0.99 0.86 0.93 0.80 0.94 0.85 0.94 -0.94 0.92 0.98 0.97 0.95 0.96 1.00
    Sr 0.88 -0.90 -0.64 -0.88 -0.89 -0.87 -0.74 -0.84 -0.60 -0.87 -0.66 -0.87 0.85 -0.76 -0.86 -0.76 -0.84 -0.84 -0.83 1.00
    Th -0.92 0.95 0.84 0.97 0.93 0.96 0.84 0.89 0.86 0.89 0.80 0.90 -0.90 0.87 0.97 0.96 0.92 0.95 0.98 -0.80 1.00
    U -0.93 0.95 0.81 0.96 0.92 0.94 0.83 0.89 0.80 0.91 0.82 0.88 -0.92 0.89 0.96 0.96 0.94 0.95 0.97 -0.78 0.97 1.00
    V -0.91 0.90 0.88 0.90 0.89 0.88 0.74 0.91 0.80 0.90 0.73 0.87 -0.88 0.89 0.91 0.92 0.84 0.93 0.89 -0.72 0.90 0.87 1.00
    Y -0.76 0.82 0.74 0.86 0.80 0.86 0.76 0.74 0.86 0.73 0.69 0.77 -0.74 0.72 0.88 0.90 0.78 0.82 0.91 -0.64 0.95 0.90 0.80 1.00
    Zr -0.97 0.98 0.86 0.98 0.96 0.97 0.87 0.94 0.75 0.96 0.84 0.92 -0.96 0.93 0.98 0.98 0.98 0.99 0.98 -0.82 0.97 0.98 0.90 0.87 1.00
    ΣREE -0.85 0.90 0.82 0.93 0.88 0.93 0.82 0.83 0.86 0.83 0.78 0.85 -0.84 0.82 0.94 0.95 0.87 0.90 0.96 -0.72 0.99 0.95 0.86 0.98 0.93 1.00
    下载: 导出CSV

    表 4  研究区沉积物及岩石样品稀土元素特征指标平均值

    Table 4.  The average REE indices of sediments and rocks

    数据来源 LREE HREE LREE/HREE ∑REE (La/Sm)N (La/Yb)N δCe δEu
    50°E玄武岩 21.23 17.59 1.21 38.82 0.54 0.47 0.99 1.08
    49°E硫化物 2.18 0.69 2.97 2.87 3.48 8.82 1.05 0.86
    48°~51°E沉积物 16.31 3.56 4.61 19.87 3.36 5.39 0.68 0.72
    本研究 85.61 13.49 6.34 99.10 2.90 6.57 0.76 0.75
    富钴结壳 1046.30 132.51 8.18 1178.82 82.13 553.21 1.34 0.20
    PAAS 132.8 13.0 10.25 184.0 4.33 9.13 1.01 0.63
    UCC 106.8 10.4 10.30 148.2 4.15 10.45 0.99 0.69
    注:硫化物据文献[13];玄武岩数据据文献[14];48°~51°E钙质沉积物据文献[3, 6];富钴结壳据文献[59]
    下载: 导出CSV
  • [1]

    Matsuoka H. 23. A new method to evaluate dissolution of CaCO3 in the deep-sea sediments[J].日本古生物学會報告·紀事(新編), 1990, 1990 (157): 430-434.

    [2]

    黄大松, 张霄宇, 张国堙, 等.西南印度洋中脊48.6°~51.7°E沉积物地球化学特征[J].地质科技情报, 2016, 35 (1): 22-29.

    HUANG Dasong, ZHANG Xiaoyu, ZHANG Guoyin, et al. Geochemical characteristics of sediments in Southwest Indian Ridge 48.6°~51.7°E[J]. Geological Science and Technology Information, 2016, 35 (1): 22-29.

    [3]

    陈圆圆, 于炳松, 苏新, 等.西南印度洋中脊钙质沉积物地球化学及矿物学特征[J].地质科技情报, 2013, 32 (1): 107-113. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201301019

    CHEN Yuanyuan, YU Bingsong, SU Xin, et al. Mineralogical and geochemical characteristics of the calcareous sediments in Southwest Indian Ridg[J]. Geological Science and Technology Information, 2013, 32 (1): 107-113. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201301019

    [4]

    Kolla V, Bé A W H, Biscaye P E. Calcium carbonate distribution in the surface sediments of the Indian Ocean[J]. Journal of Geophysical Research, 1976, 81 (15): 2605-2616. doi: 10.1029/JC081i015p02605

    [5]

    Banakar V K, Parthiban G, Pattan J N, et al. Chemistry of surface sediment along a north-south transect across the equator in the Central Indian Basin: an assessment of biogenic and detrital influences on elemental burial on the seafloor[J]. Chemical Geology 1998, 147: 217-232. doi: 10.1016/S0009-2541(98)00015-1

    [6]

    Kolla V, Kidd R B. Sedimentation and Sedimentary Processes in the Indian Ocean[Z]: Springer US, 1982: 1-50.

    [7]

    Li Z, Chu F, Jin L, et al. Major and trace element composition of surface sediments from the Southwest Indian Ridge: evidence for the incorporation of a hydrothermal component[J]. Acta Oceanologica Sinica, 2016, 35 (2): 101-108. doi: 10.1007/s13131-015-0678-8

    [8]

    Mascarenhas-Pereira M B L, Nath B N. Selective leaching studies of sediments from a seamount flank in the Central Indian Basin: Resolving hydrothermal, volcanogenic and terrigenous sources using major, trace and rare-earth elements[J]. Marine Chemistry, 2010, 121 (1-4): 49-66. doi: 10.1016/j.marchem.2010.03.004

    [9]

    Luyendyk B P, Davies T A, Results of dsdp leg 26 and the geologic history of the southern indian ocean[R]. Initial Reports of the Deep Sea Drilling Project, 1974, 26.

    [10]

    Yasukawa K, Nakamura K, Fujinaga K, et al. Rare-earth, major, and trace element geochemistry of deep-sea sediments in the Indian Ocean: Implications for the potential distribution of REY-rich mud in the Indian Ocean[J]. Geochemical Journal, 2015, 49 (6): 621-635. doi: 10.2343/geochemj.2.0361

    [11]

    Wilson D J, Piotrowski A M, Galy A, et al. Reactivity of neodymium carriers in deep sea sediments: Implications for boundary exchange and paleoceanography[J]. Geochimica et Cosmochimica Acta, 2013, 109: 197-221. doi: 10.1016/j.gca.2013.01.042

    [12]

    McCave I N R R S. Charles Darwin Cruise 129, report[R]. Dep. of Earth Sci., 2001,

    [13]

    陶春辉, 李怀明, 黄威, 等.西南印度洋脊49°39′E热液区硫化物烟囱体的矿物学和地球化学特征及其地质意义[J].科学通报, 2011, 56: 2413-2423. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201128009

    TAO Chunhui, LI Huaiming, HUANG Wei, et al. Mineralogical and geochemical features of sulfide chimney from the 49°39′E hydrothermal field on the Southwest Indian Ridge and their geological inferences[J]. Chinese Sci Bull, 2011, 56: 2413-2423. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201128009

    [14]

    于淼, 苏新, 陶春辉, 等.西南印度洋中脊49.6°E和50.5°E区玄武岩岩石学及元素地球化学特征[J].现代地质, 2013, 23 (3): 497-508. doi: 10.3969/j.issn.1000-8527.2013.03.001

    YU Miao, SU Xin, TAO Chunhui, et al. Petrological and geochemical features of basalts at 49.6°E and 50.5°E Hydrothermal Fields along the Southwest Indian Ridge[J]. Geoscience, 2013, 23 (3): 497-508. doi: 10.3969/j.issn.1000-8527.2013.03.001

    [15]

    Tao C, Li H, Huang W, et al. Mineralogical and geochemical features of sulfide chimneys from the 49°39′E hydrothermal field on the Southwest Indian Ridge and their geological inferences[J]. Chinese Science Bulletin, 2011, 56 (26): 2828-2838. doi: 10.1007/s11434-011-4619-4

    [16]

    Tao C, Lin J, Guo S, et al. First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge[J]. Geology, 2012, 40 (1): 47-50. doi: 10.1130/G32389.1

    [17]

    Zeng Z, Ma Y, Yin X, et al. Factors affecting the rare earth element compositions in massive sulfides from deep-sea hydrothermal systems[J]. Geochemistry, Geophysics, Geosystems, 2015, 16 (8): 2679-2693. doi: 10.1002/2015GC005812

    [18]

    McCave I N, Kiefer T, Thornalley D J R, et al. Deep flow in the Madagascar-Mascarene Basin over the last 150000 years[J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2005, 363 (1826): 81-99. doi: 10.1098/rsta.2004.1480

    [19]

    Huneke H, Mulder T. Deep-sea Sediments[Z]. Elsevier, 2011.

    [20]

    Kolla V, Henderson L, Biscaye P E. Clay mineralogy and sedimentation in the western Indian ocean[J]. Deep Sea Research and Oceanographic Abstracts, 1976, 23 (10): 949-961. doi: 10.1016/0011-7471(76)90825-1

    [21]

    Dick H J B, Lin J, Schouten H. An ultraslow-spreading class of ocean ridge[J]. Nature, 2003, 426 (6965): 405-412. doi: 10.1038/nature02128

    [22]

    Toole J M, Warren B A. A hydrographic section across the subtropical South Indian Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1993, 40 (10): 1973-2019. doi: 10.1016/0967-0637(93)90042-2

    [23]

    李江海, 李洪林, 韩喜球, 等, 印度洋底大地构造图[Z].地质出版社, 2015.

    LI Jianghai, LI Honglin, HAN Xiqiu, et al. Indian Ocean Geostructure Map[Z]. Geology Publisher, 2015.

    [24]

    韦刚健, 刘颖, 李献华, 等.南海沉积物中过剩铝问题的探讨[J].矿物岩石地球化学通报, 2003, 22(1): 23-25. doi: 10.3969/j.issn.1007-2802.2003.01.005

    WEI Gangjian, LIU Ying, LI Xianhua, et al. Excess Al in the sediments from South China Sea[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2003, 22 (1): 23-25. doi: 10.3969/j.issn.1007-2802.2003.01.005

    [25]

    Morse J W, Formation and Diagenesis of Carbonate Sediments[Z]. In: Mackenzie, F.T. (Ed.), Elsevier, Amsterdam, 2003.

    [26]

    邓宏文, 钱凯.沉积地球化学与环境分析[M].甘肃科学技术出版社, 1993.

    DENG Hongwen, QIAN Kai. Sediment Geochemistry and Environment Analyse[M]. Gansu Science Technique Publish, 1992.

    [27]

    Filippelli G M, Delaney M L. Phosphorus geochemistry of equatorial Pacific sediments[J]. Geochemical et Cosmochimica Acta, 1996, 60: 1479-1495. doi: 10.1016/0016-7037(96)00042-7

    [28]

    Invitation to Oceanography, Fifth Edition. Chapter4. Marine Sedimentation[Z]. Jones and Bartlett Publishers. www.jbpub.com/oceanlink.

    [29]

    Ramsay Ats. The distribution of calcium carbonate in deep sea sediments[R]. The Society of Economic Paleontologists and Mineralogists (SEPM) Studies in Paleo-Oceanography (SP20), 1974.

    [30]

    Nairn AEM, Stehli FG. The Ocean Basins and Margins- the Indian Ocean[Z]. 1982.

    [31]

    Kolla V, Sullivan L, Streeter S S, et al. Spreading of Antarctic Bottom Water and its effects on the floor of the Indian Ocean inferred from bottom-water potential temperature, turbidity, and sea-floor photography[J]. Marine Geology, 1976, 21 (3): 171-189. doi: 10.1016/0025-3227(76)90058-X

    [32]

    L R R, Shan G. Composition of the continental crust[J]. Treatise Geochem, 2003, 3:1-64.

    [33]

    Dymond J. Geochemistry of Nazca plate surface sediments: An evaluation of hydrothermal, biogenic, detrital, and hydrogenous sources[J]. Geological Society of America Memoirs, 1981, 154 (133-174).

    [34]

    Emerson S R, Archer D. Calcium carbonate preservation in the ocean[J]. Philosophical Transactions of the Royal Society A, 1990, 331: 29-40. doi: 10.1098/rsta.1990.0054

    [35]

    Warren B A. Bottom water transport through the Southwest Indian Ridge[J]. Deep Sea Research, 1978, 25 (3): 315-321. doi: 10.1016/0146-6291(78)90596-9

    [36]

    Mclennan S M. Rare earth elements and sedimentary rocks: influence of provenance and sedimentary processes[J]. Reviews in Mineralogy, 1989, 21 (8): 169-200.

    [37]

    Boynton WV. Chapter 3-Cosmochemistry of the Rare Earth Elements: Meteorite Studies[Z]. 1983: 63-114.

    [38]

    Windom H L. Eolian contributions to marine sediments[J]. Journal Sedimentatry of Petrology, 1975, 45: 520-529.

    [39]

    Schott F A, Xie S-P, McCreary J P. Indian Ocean circulation and climate variability[J]. Reviews of Geophysics, 2009, 47 (1).

    [40]

    Talley L D, Pickard G L, Emery W J, et al. Chapter 11-Indian Ocean. Descriptive Physical Oceanography (Sixth Edition)[Z]. Boston: Academic Press, 2011: 363-399.

    [41]

    Nothdurft L D, Webb G E, Kamber B S. Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: confirmation of a seawater REE proxy in ancient limestones[J]. Geochimica et Cosmochimica Acta, 2004, 68 (2): 263-283. doi: 10.1016/S0016-7037(03)00422-8

    [42]

    Nance W B, Taylor S. Rare earth element patterns and crustal evolution-I. Australian post-Archean sedimentary rocks[J]. Geochimica et Cosmochimica Acta, 1976, 40(12): 1539-1551. doi: 10.1016/0016-7037(76)90093-4

    [43]

    Middleton N J, Betzer P R, Bull P A. Long-range transport of 'giant' aeolian quartz grains: linkage with discrete sedimentary sources and implications for protective particle transfer[J]. Marine Geology, 2001, 177 (3-4): 411-417. doi: 10.1016/S0025-3227(01)00171-2

    [44]

    Does M V D, Korte L F, Munday C I, et al. Particle size traces modern Saharan dust transport and deposition across the equatorial North Atlantic[J]. Atmospheric Chemistry & Physics, 2016, 1-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4ec354e9a6463592a7c956d14f98eb0b

    [45]

    Schütz L, Jaenicke R, Pietrek H. Saharan dust transport over the North Atlantic Ocean[J]. Geological Society of America Special Papers, 1981, 186: 87-100.

    [46]

    Gillette D A, Gillette D A. Environmental factors affecting dust emission by wind erosion[J]. Saharan Dust, 1979: 71-91.

    [47]

    Liu E, Wang XC, Zhao JX, et al. Geochemical and Sr-Nd isotopic variations in a deep-sea sediment core from Eastern Indian Ocean: Constraints on dust provenances, paleoclimate and volcanic eruption history in the last 300, 000 years[J]. Marine Geology, 2015, 367: 38-49. doi: 10.1016/j.margeo.2015.05.005

    [48]

    Franchi F, Turetta C, Cavalazzi B, et al. Trace elements and REE geochemistry of Middle Devonian carbonate mounds (Maíder Basin, Eastern Anti-Atlas, Morocco): Implications for early diagenetic processes[J]. Sedimentary Geology, 2016, 343: 56-71. doi: 10.1016/j.sedgeo.2016.07.008

    [49]

    Bau M, Dulski P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa[J]. Precambrian Research, 1996, 79 (1): 37-55.

    [50]

    Marx S K, Kamber B S, McGowan H A. Provenance of long-travelled dust determined with ultra-trace-element composition: a pilot study with samples from New Zealand glaciers[J]. Earth Surface Processes and Landforms, 2005, 30 (6): 699-716. doi: 10.1002/esp.1169

    [51]

    Jahn B-m, Gruau G, Glikson A Y. Komatiites of the Onverwacht Group, S. Africa: REE geochemistry, Sm/Nd age and mantle evolution[J]. Contributions to Mineralogy and Petrology, 1982, 80 (1): 25-40. doi: 10.1007/BF00376732

    [52]

    Barton Jr J M, Doig R, Smith C B, et al. Isotopic and REE characteristics of the intrusive charnoenderbite and enderbite geographically associated with the Matok Pluton, Limpopo Belt, southern Africa[J]. Precambrian Research, 1992, 55 (1-4): 451-467. doi: 10.1016/0301-9268(92)90039-Q

    [53]

    Kröner A, Tegtmeyer A. Gneiss-greenstone relationships in the Ancient Gneiss Complex of southwestern Swaziland, southern Africa, and implications for early crustal evolution[J]. Precambrian Research, 1994, 67 (1-2): 109-139. doi: 10.1016/0301-9268(94)90007-8

    [54]

    German C R. Hydrothermal activity on the eastern SWIR (50°-70°E): Evidence from core-top geochemistry, 1887 and 1998[J]. Geochemistry, Geophysics, Geosystems, 2003, 4 (7).

    [55]

    余芝华, 范德江, 张爱滨, 等.西南印度洋中脊富钴结壳的矿物学和地球化学[J].海洋地质与第四纪地质, 2013, 33 (6): 71-80. http://www.cnki.com.cn/Article/CJFDTotal-HYDZ201306012.htm

    YU Zhihua, FAN Dejiang, ZHANG Aibin, et al. Mineralogy and geochemistry of the Co-rich ferromanganese crusts from the south west indian ridgemar[J]. Marine Geology & Quaternary Geology, 2013, 33 (6): 71-80. http://www.cnki.com.cn/Article/CJFDTotal-HYDZ201306012.htm

    [56]

    Glasby G P. Mineralogy, geochemistry, and origin of Pacific red clays: A review[J]. New Zealand Journal of Geology and Geophysics, 1991, 34 (2): 167-176. doi: 10.1080/00288306.1991.9514454

    [57]

    Hofmann A W. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust[J]. Earth and Planetary Science Letters, 1988, 90 (3): 297-314. doi: 10.1016/0012-821X(88)90132-X

    [58]

    Sun S-S, Nesbitt R W, Sharaskin A Y. Geochemical characteristics of mid-ocean ridge basalts[J]. Earth and Planetary Science Letters, 1979, 44 (1): 119-138. doi: 10.1016/0012-821X(79)90013-X

    [59]

    余芝华.西南印度洋中脊富钴结壳矿物学及地球化学研究[D].中国海洋大学, 2013.

    YU Zhihua. Research of geochemistry and mineralogy of Co-rich crust from the south west Indian ridge[D]. Ocean University of China, 2013.

  • 加载中

(12)

(4)

计量
  • 文章访问数:  2376
  • PDF下载数:  15
  • 施引文献:  0
出版历程
收稿日期:  2017-05-05
修回日期:  2017-06-12
刊出日期:  2018-10-28

目录