Variation of East Asian summer monsoon since MIS3 recorded by an absolutely-dated stalagmite from north China
-
摘要:
基于山西龙洞8个铀钍年代和100个氧同位素数据(δ18O)重建了深海氧同位素(MIS)3阶段以来东亚夏季风演化历史。石笋L8沉积并不连续,主要生长在58.0~54.5, 27.1~18.0和6.8~3.9kaBP 3个阶段。不同于季风边缘区其他洞穴记录,石笋δ18O值在24.5kaBP突然增加1‰,表明MIS2早期内陆地区经历了一次显著的弱季风过程,可能响应于北大西洋Heinrich 2事件。石笋δ18O序列伴随着轨道尺度太阳辐射的变化,晚全新世δ18O值持续偏重意味着低纬热带辐合带逐步南移,导致北方地区夏季风降水持续减少。Dansgaard-Oeschger(D-O)15事件具有明显的双峰结构,与格陵兰冰心记录的亚千年尺度温度波动几乎同步变化。
Abstract:The high-resolution oxygen isotope sequence established upon 100 oxygen isotope samples and 8 230Th dates from the Dragon Cave, Shanxi province, north China, provides a detailed history of East Asian summer monsoon (EASM) variation since Marine Isotope Stages (MIS) 3. The sample L8 grew discontinuously during the periods from 58.0 to 54.5 kaBP, 27.1 to 18.0 kaBP, 6.8 to 3.9 kaBP, respectively. On the orbital scale, the long-term trend of the δ18O record generally follow the North Hemisphere Insolation changes. However, the L8 δ18O value abruptly increased by 1‰ at 24.5 kaBP, indicating an abrupt weak monsoon event possibly associated with the Heinrich event 2 in the North Atlantic region. Moreover, gradual enrichment of δ18O since ~ 6 kaBP also indicates steadily weakening of EASM, responding to southward retreat of the Intertropical Convergence Zone. During the early MIS3, our record shows two millennial-scale strong summer events, analogous in timing and structure to the Greenland Dansgaard-Oeschger events 16-15. The latter event (DO15) exhibits two distinct phases, consistent with the centennial shifts in Greenland temperature changes. This relationship reveals a tight coupling between high- and low-latitude climates at sub-millennial scales, implying a role of the large-scale ocean- atmosphere circulation in linking Greenland temperature and the Asian monsoon.
-
Key words:
- Loess Plateau /
- stalagmite /
- Dansgaard-Oeschger 15 event /
- Heinrich event 2
-
-
表 1 石笋L8的ICP-MS测年结果
Table 1. The results of ICP-MS 230Th dating for stalagmite L8
样品号-深度 238U ×10-9 232Th ×10-12 234U测量值a [230Th/238U]活度比c 未校正年龄(aBP) 校正年龄(aBP)c, d δ234Uinitial校正初始值b L8-3 621±1 70±5 3718±6.0 0.1693±0.0008 3905±19 3905±19 3760±6 L8-20 492±1 2897±19 3716±12 0.2455±0.0016 5730±41 5679±44 3777±12 L8-26 476±1 1540±6 3701±4 0.2886±0.0013 6794±33 6776±34 3773±5 L8-36 1194±2 51±5 3528±7 0.7362±0.0016 18861±54 18859±54 3722±7 L8-52 1614±2 238±7 3522.8±6 0.8688±0.0020 22580±64 22579±64 3755±6 L8-71 903±1 87±4 3491.2±5 1.0168±0.0019 27027±67 27027±67 3769±6 L8-79 2117±4 208±18 2997.0±8 1.6756±0.0038 55079±201 55079±201 3502±9 L8-92 1177±12 68±5 2959.7±6 1.7070±0.0036 57015±177 57013±177 3477±7 注:a.δ234U=([δ234U/δ238U]activity-1)x1000;b.δ234Uinitial校正初始值计算是依据公式δ234Uinitial=δ234Umeasured×eλ234*T; T是校正年龄; c.[230Th/238U]活度计算为[230Th/238U]activity=1-e-λ230T+(δ234Umeasured/1000)[λ230/(λ230-λ234)](1-e-(λ230-λ234)T); 230Th, 234U, 及238U半衰期沿用Shen等的使用值[10]; d.校正年龄假设的初始230Th/232Th原子数比值为4±2×10-6; 年龄(aBP)以相对公元1950年表示 -
[1] Voelker A H L. Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: a database[J]. Quaternary Science Reviews, 2002, 21: 1185-1212. doi: 10.1016/S0277-3791(01)00139-1
[2] Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294: 2345-2348. doi: 10.1126/science.1064618
[3] Liu, D B, Wang Y J, Cheng H, et al. Sub-millennial variability of Asian monsoon intensity during the early MIS 3 and its analogue to the ice age terminations[J]. Quaternary Science Reviews, 2010, 29:1107-1115. doi: 10.1016/j.quascirev.2010.01.008
[4] Duan W H, Cheng H, Tan M, et al. Onset and duration of transitions into Greenland Interstadials 15.2 and 14 in northern China constrained by an annually laminated stalagmite[J]. Scientific Reports, 2016, 6, 20844; dio:10.1038/srep20844. doi: 10.1038/srep20844
[5] 陈世涛, 汪永进, 吴江滢, 等.东亚季风气候变化对Heinrich2事件的响应:来自石笋的高分辨率记录[J].地球化学, 2006, 35(6):586-592. doi: 10.3321/j.issn:0379-1726.2006.06.002
CHEN Shitao, WANG Yongjing, WU Jiangying, et al. An event of the East Asian monsoon responding to Heinrich Event 2: evidence from high-resolution stalagmite record[J]. Geochimica, 2006, 35 (6): 586-592. doi: 10.3321/j.issn:0379-1726.2006.06.002
[6] Zhao K, Wang Y J, Edwards R L, et al. High-resolution stalagmite δ18O records of Asian monsoon changes in central and southern China spanning the MIS 3/2 transition[J]. Earth and Planetary Science Letters, 2010, 298:191-198. doi: 10.1016/j.epsl.2010.07.041
[7] 吴秀平, 吴锦奎, 候典炯, 等.黄土高原西部石笋记录的H2事件特征[J].地球科学-中国地质大学学报, 2013, 38(3):471- 481. http://d.old.wanfangdata.com.cn/Periodical/dqkx201303004
WU Xiuping, WU Jinkui, HOU Dianjiong, et al. Characteristics and variability of Heirich-2 event recorded by stalagmite oxygen isotopic composition in the western Loess Plateau[J]. Journal of China University of Geosciences, 2013, 38 (3): 471-481. http://d.old.wanfangdata.com.cn/Periodical/dqkx201303004
[8] Cosford J, Qing H R, Lin Y, et al. The East Asian monsoon during MIS 2 expressed in a speleothem δ18O record from Jintanwan Cave, Hunan, China[J]. Quaternary Research, 2010, 73:541-549. doi: 10.1016/j.yqres.2010.01.003
[9] Sun Y B, Clemens S C, Morrill C, et al. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon[J]. Nature Geoscience, 2012, 5: 46-49. doi: 10.1038/ngeo1326
[10] Shen C C, Edwards R L, Cheng H, et al. Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry[J]. Chemical Geology, 2002, 185: 165-178. doi: 10.1016/S0009-2541(01)00404-1
[11] Shen C C, Wu C C, Cheng H, et al. High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols[J]. Geochimica et Cosmochimica Acta, 2012, 99: 71-86. doi: 10.1016/j.gca.2012.09.018
[12] Fleitmann D, Burns S, Pekala M et al. Holocene and Pleistocene pluvial periods in Yemen, southern Arabia[J]. Quaternary Science Reviews, 2011, 30:783-787. doi: 10.1016/j.quascirev.2011.01.004
[13] Wang X F, Auler A S, Edwards R L et al. Wet periods in northeastern Brazil over the past 210 ka linked to distant climate anomalies[J]. Nature, 2004, 432:740-743. doi: 10.1038/nature03067
[14] 董进国.湖北三宝洞石笋生长速率及其古气候意义[J].第四纪研究, 2013, 33:146-154. doi: 10.3969/j.issn.1001-7410.2013.01.16
DONG Jinguo. The growth and the paleoclimatic significance of stalagmites in Sanbao cave, Hubei[J]. Quaternary Sciences, 2013, 33: 146-154. doi: 10.3969/j.issn.1001-7410.2013.01.16
[15] 施雅风, 于革. 40~30 kaBP中国暖湿气候和海侵的特赠与成因探讨[J].第四纪研究, 2003, 23:1-11. doi: 10.3321/j.issn:1001-7410.2003.01.001
SHI Yafeng, Yu Ge. Warm-humid climate and transgressions during 40~30 kaBP and their potential mechanisms[J]. Quaternary Sciences, 2003, 23: 1-11. doi: 10.3321/j.issn:1001-7410.2003.01.001
[16] Dong J G, Shen C C, Kong X G, et al. Reconciliation of hydroclimate sequences from the Chinese Loess Plateau and low-latitude East Asian Summer Monsoon regions over the past 14, 500 years[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 435:127-135. doi: 10.1016/j.palaeo.2015.06.013
[17] 白晓, 桑文翠, 李丰山, 等.武都万象洞方解石现代沉积体系δ18O值月变化特征[J].地球化学, 2015, 44: 245-253. doi: 10.3969/j.issn.0379-1726.2015.03.004
BAI Xiao, SANG Wencui, LI Fengshan, et al. Monthly isotopic variations of calcite deposition system in Wanxiang Cave, Wudu County, Gandu[J]. Geochimica, 2015, 44 (3): 245-253. doi: 10.3969/j.issn.0379-1726.2015.03.004
[18] 王芳, 孙青, 蔡炳贵, 等.辽宁本溪庙洞降水、滴水和现生碳酸盐钙的δ18O变化特征及其古气候意义[J].第四纪研究, 2016, 36: 1370-1382. doi: 10.11928/j.issn.1001-7410.2016.06.03
WANG Fang, SUN Qing, CAI Binggui, et al. Variation of δ18O in the meteoric precipitation, drip water and their calcite deposition in Miaodong cave, Liaoning province and its implications for palaeoclimatic reconstructions[J]. Quaternary Sciences, 2016, 36: 1370-1382. doi: 10.11928/j.issn.1001-7410.2016.06.03
[19] Tan L C, Cai Y J, Cheng H, et al. Climate significance of speleothem δ18O from central China on decadal timescale[J]. Journal of Asian Earth Sciences, 2015, 106:150-155. doi: 10.1016/j.jseaes.2015.03.008
[20] LeGrande A N and Schmidt G A. Sources of Holocene variability of oxygen isotopes in paleoclimate archives[J]. Climate of the Past, 2009, 5: 441-455. doi: 10.5194/cp-5-441-2009
[21] Liu J B, Chen J H, Zhang X J, et al. Holocene East Asian summer monsoon records in northern China and their inconsistency with Chinese stalagmite δ18O records[J]. Earth Science Reviews, 2015, 148: 194-208. doi: 10.1016/j.earscirev.2015.06.004
[22] Pausata F, Battisti D, Nisancioglu K, et al. Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event[J]. Nature Geoscience, 2011, 4: 474-480. doi: 10.1038/ngeo1169
[23] Maher B A. Holocene variability of the East Asian summer monsoon from Chinese cave records: a re-assessment[J]. The Holocene, 2008, 18: 861-866. doi: 10.1177/0959683608095569
[24] Cheng H, Edwards R L, Sinha A et al. The Asian monsoon over the past 640, 000 years and ice age terminations[J]. Nature, 2016, 534: 640-646. doi: 10.1038/nature18591
[25] Liu Z Y, Wen X Y, Brady E C, et al. Chinese cave records and the East Asia Summer Monsoon[J]. Quaternary Science Reviews, 2014, 83: 115-128. doi: 10.1016/j.quascirev.2013.10.021
[26] Orland I J, Edwards R L, Cheng H, et al. Direct measurements of deglacial monsoon strength in a Chinese stalagmite[J]. Geology, 2015, 43: 555-558. doi: 10.1130/G36612.1
[27] Goldsmith Y, Broecker W S, Xu H, et al. Northward extent of East Asian monsoon covaries with intensity on orbital and millennial timescales[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114: 1817-1821. doi: 10.1073/pnas.1616708114
[28] Rao Z G, Chen F H, Cheng H, et al. High-resolution summer precipitation variations in the western Chinese Loess Plateau during the last glacial[J]. Scientific Reports, 2013, 3, 2785;dio:10.1038/srep02785. doi: 10.1038/srep02785
[29] Dong J G, Wang Y J, Cheng H, et al. A high-resolution stalagmite record of the Holocene East Asian monsoon from Mt Shennongjia, central China[J]. The Holocene, 2010, 20: 257-264. doi: 10.1177/0959683609350393
[30] Liu D B, Wang Y J, Cheng H, et al. Cyclic changes of Asian monsoon intensity during the early mid-Holocene from annually-laminated stalagmites, central China [J]. Quaternary Science Reviews, 2015, 121: 1-10. doi: 10.1016/j.quascirev.2015.05.003
[31] Liu Y H, Henderson G M, Hu C Y, et al. Links between the East Asian monsoon and North Atlantic climate during the 8, 200 year event[J]. Nature Geoscience, 2013, 6: 117-120. doi: 10.1038/ngeo1708
[32] Svensson A, Andersen K K, Bigler M, et al. A 60 000 year Greenland stratigraphic ice core chronology[J]. Climate of the Past, 2008, 4: 47-57. doi: 10.5194/cp-4-47-2008
[33] Schneider T, Bischoff, T, Haug G H. Migrations and dynamics of the intertropical convergence zone[J]. Nature, 2014, 531: 45-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=99f96a9b19302c00ef5d2773a72def8e
-