Variations of primary productivity in the western Philippine Sea in the past 260000 years:evidence from coccolith
-
摘要:
基于国际海洋古全球变化研究项目(IMAGES)在西菲律宾海本哈姆海台获取的高质量柱状沉积物岩芯MD06-3047(17°00.44′N、124°47.93′E),利用颗石藻下透光带属种Florisphaera profunda的相对丰度以及初级生产力转换函数,恢复了260 ka以来西菲律宾海上部水体营养跃层以及初级生产力的变化历史。发现该区域26万年以来初级生产力冰期-间冰期变化特征较不明显,冰期生产力平均值略高于间冰期。通过与前人已发表的指示东亚冬季风强弱的伊利石/蒙脱石记录和热带太平洋纬向表层海水温度梯度记录的对比,提出MIS 8期以来,热带西菲律宾海古生产力变化的主要受控因素在MIS 5a左右发生明显转变。在MIS 8后期至MIS 5a之间,初级生产力受到长期类ENSO过程的影响较为显著,当热带东西太平洋海水表层温度梯度较小的时期,认为热带太平洋处于类El Niño状态,此时西菲律宾海营养跃层相对较浅,生产力较高,反之则相反。而在MIS 5末期至末次冰消期时段,生产力受东亚冬季风的影响相对于长期ENSO过程更强,可能掩盖了后者的古生产力信号。冰期东亚冬季风加强,一方面,可以引起上部水体混合加强,增加下部营养物质向上的输送,另一方面大量风尘物质的输入可以刺激颗石藻的生长;反之在冰消期,水体混合较弱,风尘输入显著减少,生产力也随之降低。
Abstract:Primary productivity data of the Core MD06-3047 (17°00.44′N, 124°47.93′E, 2510m water depth) from the International Marine Global Change Study Program (IMAGES) is presented in this paper. The core is taken from the Benham Rise of West Philippine Sea. Coccolith records revealed considerable glacial-interglacial changes of paleoproductivity in the west Philippine Sea over the past 260 ka. The recently published research data of the core made this study possible to reveal the forcing mechanisms of the glacial-interglacial variations in primary productivity. During the period of 260~80 ka, the abundance of F. profunda and primary productivity shows a similar variation trend with the tropical eastern-western Pacific sea surface temperature gradient (ΔSST). The lower ΔSST in the glacial intervals indicate that tropical Pacific was suffered a long term El Niño-like condition, which produced relatively shallow thermocline/nutricline and high primary productivity in the western Pacific. On the contrary, the higher ΔSST in the interglacial intervals indicates a La Niña-like state in the tropical Pacific, which deepened the thermocline/nutricline and suppressed the primary productivity. From the late MIS5 to the last deglacial, we attribute the high values of productivity in the glacial interval and low values in the interglacial intervals to the Eastern Asian winter monsoon, due to the similar trend between illite/smectite ratio and primary productivity in the core MD06-3047.
-
Key words:
- primary productivity /
- coccolith /
- East Asian Monsoon /
- Late Quaternary /
- West Philippine Sea
-
-
[1] Nair R, Ittekkot V, Manganini S, et al. Increased particle flux to the deep ocean related to monsoons[J]. Nature, 1989, 338(6218): 749-751. doi: 10.1038/338749a0
[2] Beaufort L, Lancelot Y, Camberlin P, et al. Insolation cycles as a major control of equatorial Indian Ocean primary production[J]. Science, 1997, 278(5342): 1451-1454. doi: 10.1126/science.278.5342.1451
[3] Beaufort L, De Garidel-Thoron T, Mix A C, et al. ENSO-like forcing on oceanic primary production during the late Pleistocene[J]. Science, 2001, 293(5539): 2440-2444. doi: 10.1126/science.293.5539.2440
[4] Garidel-Thoron T, Beaufort L, Linsley B K, et al. Millennial-scale dynamics of the East Asian winter monsoon during the last 200000 years[J]. Paleoceanography, 2001, 16(5): 491-502. doi: 10.1029/2000PA000557
[5] Beaufort L, De Garidel-Thoron T, Linsley B, et al. Biomass burning and oceanic primary production estimates in the Sulu Sea area over the last 380 kyr and the East Asian monsoon dynamics[J]. Marine Geology, 2003, 201(1-3): 53-65. doi: 10.1016/S0025-3227(03)00208-1
[6] Liu C, Wang P, Tian J, et al. Coccolith evidence for Quaternary nutricline variations in the southern South China Sea[J]. Marine Micropaleontology, 2008, 69(1): 42-51. doi: 10.1016/j.marmicro.2007.11.008
[7] Li T, Zhao J, Sun R, et al. The variation of upper ocean structure and paleoproductivity in the Kuroshio source region during the last 200 kyr[J]. Marine Micropaleontology, 2010, 75(1-4): 50-61. doi: 10.1016/j.marmicro.2010.02.005
[8] Bolliet T, Holbourn A, Kuhnt W, et al. Mindanao Dome variability over the last 160 kyr: Episodic glacial cooling of the West Pacific Warm Pool[J]. Paleoceanography, 2011, 26(1): PA1208. http://www.researchgate.net/publication/216158830_Mindanao_Dome_variability_over_the_last_160_kyr_Episodic_glacial_cooling_of_the_West_Pacific_Warm_Pool
[9] Li T, Zhao J, Nan Q, et al. Palaeoproductivity evolution in the centre of the western Pacific warm pool during the last 250 ka[J]. Journal of Quaternary Science, 2011, 26(5): 478-484. doi: 10.1002/jqs.1471
[10] Su X, Liu C, Beaufort L, et al. Late Quaternary coccolith records in the South China Sea and East Asian monsoon dynamics[J]. Global and Planetary Change, 2013, 111: 88-96. doi: 10.1016/j.gloplacha.2013.08.016
[11] Bordiga M, Beaufort L, Cobianchi M, et al. Calcareous plankton and geochemistry from the ODP site 1209B in the NW Pacific Ocean (Shatsky Rise): New data to interpret calcite dissolution and paleoproductivity changes of the last 450 ka[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 371: 93-108. doi: 10.1016/j.palaeo.2012.12.021
[12] 刘传联, 祝幼华, 成鑫荣.南海南部第四纪表层海水古生产力变化的钙质超微化石证据[J].海洋地质与第四纪地质, 2001, 21(4): 61-66. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=11661e2f-87e7-4fbe-b362-07f952db01ae
LIU Chuanlian, ZHU Youhua, CHENG Xinrong. Calcareous nannofossil evidence for variations in Quaternary surface water paleoproductivity in the southern South China Sea[J]. Marine Geology & Quaternary Geology. 2001, 21(4): 61-66. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=11661e2f-87e7-4fbe-b362-07f952db01ae
[13] 李铁刚, 赵京涛, 孙荣涛, 等. 250kaBP以来西太平洋暖池中心区--ontong Java海台古生产力演化[J].第四纪研究, 2008, 28(3): 447-457. doi: 10.3321/j.issn:1001-7410.2008.03.009
LI Tiegang, ZHAO Jingtao, SUN Rongtao, et al. Paleoproductivity evolution in the ontong Java plateau- center of the western Pacific warm pool during the last 250ka[J]. Quaternary Sciences, 2008, 28(3): 447-457. doi: 10.3321/j.issn:1001-7410.2008.03.009
[14] 赵京涛, 李铁刚, 常凤鸣, 等.西太平洋暖池核心区MIS 7期以来的古生产力变化:类ENSO式过程的响应[J].海洋学报, 2008, 30(4): 87-94. doi: 10.3321/j.issn:0253-4193.2008.04.011
ZHAO Jingtao, LI Tiegang, CHANG Fengming, et al. Variations of paleoproductivity in the nuclear region of western Pacific warm pool since MIS 7: response to ENSO-like process[J]. Acta Oceanological Sinica, 2008, 30(4): 87-94. doi: 10.3321/j.issn:0253-4193.2008.04.011
[15] 赵京涛, 李铁刚, 李军, 等.中全新世以来南冲绳海槽古生产力变化的颗石藻化石证据[J].科学通报, 2012, 57(26): 2523-2529. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201226011
ZHAO Jingtao, LI Tiegang, LI Jun, et al. Paleoproductivity variations in the southern Okinawa trough since the middle Holocene: Calcareous nannofossil records[J]. Chin Sci. Bull., 2012, 57(26): 2523-2529. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201226011
[16] 苏翔, 刘传联, 李建如.越南岸外上升流区45万年来上层海水变化的颗石藻证据[J].海洋地质与第四纪地质, 2007, 27(2): 71-76. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=d3e7634c-256a-4ddc-94f8-be2e98c4d2f8
SU Xiang, LIU Chuanlian, LI Jianru. Coccolith evidence for variations in upper ocean water in upwelling area off the coast of Vietnam for the past 450000 years[J]. Marine Geology & Quaternary Geology. 2007, 27(2): 71-76. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=d3e7634c-256a-4ddc-94f8-be2e98c4d2f8
[17] 金晓波, 刘传联, 褚智慧.末次冰消期以来苏拉威西海颗石藻化石记录与古海洋变化[J].海洋地质与第四纪地质, 2012, 32(4): 131-137. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=02c66344-5e93-4203-bc1e-6559d52679b3
JIN Xiaobo, LIU Chuanlian, CHU Zhihui. Coccolithophore records and their response to paleoclimatic and paleoenviromental changes in Sulawesi Sea from the last deglacial[J]. Marine Geology & Quaternary Geology. 2012, 32(4): 131-137. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=02c66344-5e93-4203-bc1e-6559d52679b3
[18] 梁丹, 刘传联, 苏翔.西太平洋暖池核心区晚第四纪颗石藻属种变化及对环境演化的响应[J].海洋地质与第四纪地质, 2012, 32(4): 115-121. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=641a6319-60f0-4e9a-9f19-06ef18fd72cb
LIANG Dan, LIU Chuanlian, SU Xiang. Coccolith variations in central west Pacific warm pool and their response to environmental change during late Quaternary[J]. Marine Geology & Quaternary Geology. 2012, 32(4): 115-121. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=641a6319-60f0-4e9a-9f19-06ef18fd72cb
[19] Tang Z, Li T, Chang F, et al. Paleoproductivity evolution in the West Philippine Sea during the last 700 ka[J]. Chinese Journal of Oceanology and Limnology, 2013, 31(2): 435-444. doi: 10.1007/s00343-013-2117-z
[20] Zhang J, Wang P, Li Q, et al. Western equatorial Pacific productivity and carbonate dissolution over the last 550 kyr: Foraminiferal and nannofossil evidence from ODP Hole 807A[J]. Marine Micropaleontology, 2007, 64(3): 121-140. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-j.marmicro.2007.03.003/
[21] Xu Z, Li T, Clift P D, et al. Quantitative estimates of Asian dust input to the western Philippine Sea in the mid-late Quaternary and its potential significance for paleoenvironment[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(9): 3182-3196. doi: 10.1002/2015GC005929
[22] Wiesner M G, Zheng L, Wong H K, et al. Fluxes of Particulate matter in the South China Sea, in Particle Flux in the Ocean[M]. Edited by J. Ittekkot et al., John Wiley, New York, 1996: 293-312.
[23] Kim H J, Hyeong K, Park J-Y, et al. Influence of Asian monsoon and ENSO events on particle fluxes in the western subtropical Pacific[J]. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 2014, 90: 139-151. doi: 10.1016/j.dsr.2014.05.002
[24] Hilde T W, Chao-Shing L. Origin and evolution of the West Philippine Basin: a new interpretation[J]. Tectonophysics, 1984, 102(1-4): 85-104. doi: 10.1016/0040-1951(84)90009-X
[25] Wan S, Yu Z, Clift P D, et al. History of Asian eolian input to the West Philippine Sea over the last one million years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 326: 152-159. http://d.old.wanfangdata.com.cn/Conference/8574156
[26] Berger W, Bonneau M, Parker F. Foraminifera on the deep-sea floor-lysocline and dissolution rate[J]. Oceanologica Acta, 1982, 5(2): 249-258. http://www.sciencedirect.com/science/article/pii/0198025482901789
[27] Groetsch J, Wu G, Berger W H. Carbonate saturation cycles in the western equatorial Pacific.C]// Cycles and Events in Stratigraphy[C]. Springer, Heidelberg, 1991: 110-125.
[28] Jia Q, Li T, Xiong Z, et al. Hydrological variability in the western tropical Pacific over the past 700kyr and its linkage to Northern Hemisphere climatic change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 493: 44-54. doi: 10.1016/j.palaeo.2017.12.039
[29] Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1):PA1003. http://www.researchgate.net/publication/252139533_Correction_to_A_Pliocene-Pleistocene_stack_of_57_globally_distributed_benthic__18_O_records
[30] Okada H, Honjo S. The distribution of oceanic coccolithophorids in the Pacific[C]. Deep Sea Research, 1973, 20(4): 355.
[31] Molfino B, Mcintyre A. Precessional forcing of nutricline dynamics in the equatorial Atlantic[J]. Science, 1990, 249(4970): 766-769. doi: 10.1126/science.249.4970.766
[32] Sun H, Li T, Liu C, et al. Variations in the western Pacific warm pool across the mid-Pleistocene: Evidence from oxygen isotopes and coccoliths in the West Philippine Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 483: 157-171. doi: 10.1016/j.palaeo.2017.07.008
[33] Sun H, Li T, Chang F, et al. Deep-sea carbonate preservation in the western Philippine Sea over the past 1Ma[J]. Quaternary International, 2017, 459: 101-115. doi: 10.1016/j.quaint.2017.08.041
[34] Grelaud M, Beaufort L, Cuven S, et al. Glacial to interglacial primary production and El Niño-Southern Oscillation dynamics inferred from coccolithophores of the Santa Barbara Basin[J]. Paleoceanography, 2009, 24(1): PA1203. http://www.researchgate.net/publication/216158850_Glacial_to_interglacial_primary_production_and_El_NinoSouthern_Oscillation_dynamics_inferred_from_coccolithophores_of_the_Santa_Barbara_Basin
[35] 赵京涛, 李铁刚, 常凤鸣, 等.近190kaBP以来西太平洋暖池北缘上层海水结构和古生产力演化特征及其控制因素--来自钙质超微化石, 有孔虫和同位素的证据[J].海洋与湖沼, 2008, 39(4): 305-311. doi: 10.3321/j.issn:0029-814X.2008.04.002
ZHAO Jingtao, LI Tiegang, CHANG Fengming, et al. Evolution in upper water structure and paleoproductivity in the northern margin of the western Pacific warm pool and its forcing mechanism during the last 190ka BP evidence from nannofossil, foraminifera and their isotope composition[J]. Oceanologia et Limnologia Sinica, 2008, 39(4): 305-311. doi: 10.3321/j.issn:0029-814X.2008.04.002
[36] Fernando A G S, Peleo-Alampay A M, Lucero E S, et al. Surface sediment distribution of Florisphaera profunda in the South China Sea: an effect of dissolution?[J]. J. Nannoplankton Res., 2007, 29(2): 102-107.
[37] Sun X J, Luo Y L, Huang F, Tian J, and Wang P X. Deep-sea pollen from the South China Sea: Pleistocene indicators of East Asian monsoon[J]. Marine Geology, 2003, 201(1-3): 97-118. doi: 10.1016/S0025-3227(03)00211-1
[38] Clement A C, Seager R, and Cane M A. Orbital controls on the El Nino/Southern Oscillation and the tropical climate[J]. Paleoceanography, 1999, 14(4): 441-456. doi: 10.1029/1999PA900013
[39] Stott L, Poulsen C, Lund S, et al. Super ENSO and global climate oscillations at millennial time scales[J]. Science, 2002, 297(5579): 222-226. doi: 10.1126/science.1071627
[40] Koutavas A, Joanides S. El Niño-Southern Oscillation extrema in the Holocene and Last Glacial Maximum[J]. Paleoceanography, 2012, 27(4): PA4208. http://www.researchgate.net/publication/256476467_El_Nio--Southern_Oscillation_extrema_in_the_Holocene_and_Last_Glacial_Maximum
[41] Ford H L, Ravelo A C, Polissar P J. Reduced El Niño-Southern Oscillation during the last glacial maximum[J]. Science, 2015, 347(6219): 255-258. doi: 10.1126/science.1258437
[42] Liu Z, Lu Z, Wen X, et al. Evolution and forcing mechanisms of El Niño over the past 21000 years[J]. Nature, 2014, 515(7528): 550. doi: 10.1038/nature13963
[43] Leduc G, Vidal L, Cartapanis O, et al. Modes of eastern equatorial Pacific thermocline variability: Implications for ENSO dynamics over the last glacial period[J]. Paleoceanography, 2009, 24(3): PA3202. http://www.researchgate.net/publication/251434421_Modes_of_eastern_equatorial_Pacific_thermocline_variability_Implications_for_ENSO_dynamics_over_the_last_glacial_period?ev=prf_cit
[44] Coale K H, Johnson K S, Fitzwater S E, et al. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean[J]. Nature, 1996, 383(6600): 495-501. doi: 10.1038/383495a0
[45] Anderson R, Fleisher M, Lao Y. Glacial-interglacial variability in the delivery of dust to the central equatorial Pacific Ocean[J]. Earth and Planetary Science Letters, 2006, 242(3): 406-414.
[46] Wang B, Wu R, Fu X. Pacific-East Asian teleconnection: how does ENSO affect East Asian climate?[J]. Journal of Climate, 2000, 13(9): 1517-1536. doi: 10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2
-