西太平洋新不列颠海沟表层沉积物的地球化学特征及其物源指示

林刚, 陈琳莹, 罗敏, 陈多福. 西太平洋新不列颠海沟表层沉积物的地球化学特征及其物源指示[J]. 海洋地质与第四纪地质, 2019, 39(3): 12-27. doi: 10.16562/j.cnki.0256-1492.2018060701
引用本文: 林刚, 陈琳莹, 罗敏, 陈多福. 西太平洋新不列颠海沟表层沉积物的地球化学特征及其物源指示[J]. 海洋地质与第四纪地质, 2019, 39(3): 12-27. doi: 10.16562/j.cnki.0256-1492.2018060701
LIN Gang, CHEN Linying, LUO Min, CHEN Duofu. The geochemical characteristics of the surface sediments in the New Britain Trench of the Western Pacific Ocean and their implications for provenance[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 12-27. doi: 10.16562/j.cnki.0256-1492.2018060701
Citation: LIN Gang, CHEN Linying, LUO Min, CHEN Duofu. The geochemical characteristics of the surface sediments in the New Britain Trench of the Western Pacific Ocean and their implications for provenance[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 12-27. doi: 10.16562/j.cnki.0256-1492.2018060701

西太平洋新不列颠海沟表层沉积物的地球化学特征及其物源指示

  • 基金项目:
    国家自然科学基金青年基金项目“近陆深渊区海底沉积有机质源汇研究——以新不列颠海沟为例” (41703077);青岛海洋科学与技术国家实验室开放基金项目“马里亚纳海沟和新不列颠海沟有机质来源、降解和堆积对比研究” (QNLM2016ORP0208);中科院战略性先导科技专项(B类)“板块俯冲、构造活动与海斗深渊的地质特征-课题1深渊蛇纹岩化和海底流体活动研究” (XDB06030102)
详细信息
    作者简介: 林刚(1994—),男,硕士生,主要从事海洋沉积地球化学研究, E-mail: lin_gang@126.com
    通讯作者: 陈多福(1962—),男,研究员,主要从事海洋沉积地球化学研究,E-mail: dfchen@shou.edu.cn
  • 中图分类号: P736.21

  • 文凤英编辑

The geochemical characteristics of the surface sediments in the New Britain Trench of the Western Pacific Ocean and their implications for provenance

More Information
  • 海沟通常拥有全球最深的区域——深渊,由于地理位置、地形地貌和气候等差异,海沟沉积物可能有不同的物质来源。因此,为进一步了解海沟深渊区的物质组成与来源,选取近陆的新不列颠海沟作为研究对象,通过分析其海底表层沉积物的地球化学特征,追踪新不列颠海沟不同水深与区域的沉积物来源。研究发现不论位于半深海、深海,乃至深渊区域,新不列颠“八字型”海沟的表层沉积物主要来自于周边岛屿的火山物质,但“八字型”海沟的西支和东支有差异,西支主要为新不列颠岛东部Rabaul火山和北部火山群及所罗门群岛的火山物质,其中在西支的最北站位新不列颠岛北部火山物质的比例最高。与西支相比,东支还受到了更多来源于TLTF(Tabar、Lihir、Tanga和Feni火山)火山链物质的影响,海沟东西支物源的差异与该地区复杂的洋流密切相关。此外,西支海沟轴部(最底端)站位更多来源于岛屿河流沉积物,受火山物质影响相对较小。

  • 加载中
  • 图 1  新不列颠海沟表层沉积物站位位置及其附近区域自然环境背景

    Figure 1. 

    图 2  新不列颠海沟西支(A)和东支(B)表层沉积物及周边岛屿的常量元素分布图(C)[38-49]

    Figure 2. 

    图 3  新不列颠海沟西支(A)和东支(B)表层沉积物微量元素蛛网图及其潜在物质来源(C)[26-28, 40-49, 51-53]

    Figure 3. 

    图 4  新不列颠海沟西支(A)和东支(B)表层沉积物球粒陨石标准化REE的配分模式及其潜在物质来源(C)[26-28, 40-49, 51-55]

    Figure 4. 

    图 5  新不列颠海沟表层沉积物元素比值与深度及稀土元素与有机质关系图

    Figure 5. 

    图 6  新不列颠海沟表层沉积物Hf-La/Th物质判别图

    Figure 6. 

    图 7  新不列颠海沟表层沉积物构造环境三角图

    Figure 7. 

    图 8  新不列颠海沟表层沉积物稀土元素三组分图及其潜在物质来源[26-28, 40-49, 51-55]

    Figure 8. 

    表 1  新不列颠海沟表层沉积物站位信息

    Table 1.  Locations of surface sediment samples in the New Britain Trench

    站位 经度 纬度 水深/m 位置 时间
    GC01 149°45.53′E 6°40.84′S 4524 西支岛坡 2016
    GC02 149°45.46′E 6°36.89′S 3908 西支岛坡 2016
    BC01 149°45.48′E 6°36.83′S 3900 西支岛坡 2016
    NBT01 152°24.67′E 5°53.08′S 8225 西支海沟轴部 2017
    NBT02 152°43.01′E 6°19.99′S 4675 西支洋坡 2017
    NBT03 152°33.89′E 6°06.10′S 5925 西支洋坡 2017
    NBT05 152°21.17′E 5°24.06′S 3826 西支岛坡 2017
    NBT06 153°44.79′E 6°19.21′S 8931 东支海沟轴部 2017
    NBT07 154°32.29′E 6°14.49′S 1553 东支岛坡 2017
    NBT09 153°30.15′E 6°30.17′S 5653 东支洋坡 2017
    NBT10 153°11.54′E 6°48.40′S 4639 东支洋坡 2017
    下载: 导出CSV

    表 2  新不列颠海沟各区域的表层沉积物主量元素值

    Table 2.  The major element contents for surface sediments in the New Britain Trench

    %
    样品编号 Na2O MgO Al2O3 P2O5 K2O CaO TiO2 MnO Fe2O3
    GC01-1 2.26 3.08 16.47 0.21 1.20 4.77 0.78 0.24 8.27
    GC01-3 1.84 3.16 16.24 0.16 1.23 6.87 0.80 0.15 8.57
    GC02-1 4.04 2.29 14.54 0.17 1.20 6.78 0.62 0.37 6.43
    GC02-3 4.91 2.36 14.45 0.16 1.23 6.62 0.60 0.35 6.39
    BC01-1 5.13 2.53 14.18 0.17 1.15 7.56 0.62 0.26 6.84
    BC01-2 4.95 2.48 14.38 0.18 1.14 7.74 0.62 0.24 6.69
    BC01-5 4.48 2.38 14.47 0.17 1.16 7.61 0.62 0.28 6.67
    NBT01-1 4.17 5.68 15.17 0.20 1.73 3.92 0.98 0.21 10.06
    NBT01-2 4.34 5.68 15.10 0.20 1.70 3.44 0.98 0.16 10.02
    NBT01-3 3.71 5.33 15.09 0.20 1.61 4.37 0.98 0.15 9.59
    NBT02-1 4.93 2.40 15.78 0.22 1.95 4.20 0.57 0.21 5.64
    NBT02-2 4.61 2.46 15.88 0.22 1.88 4.17 0.59 0.21 5.92
    NBT02-3 4.37 2.58 15.95 0.23 1.81 4.17 0.61 0.23 6.13
    NBT03-1 4.54 3.16 16.33 0.22 1.53 3.64 0.76 0.31 7.88
    NBT03-2 4.25 3.16 16.27 0.22 1.54 3.61 0.77 0.33 7.95
    NBT03-3 3.99 3.08 16.57 0.21 1.55 3.49 0.78 0.33 7.88
    NBT05-1 3.58 2.93 13.35 0.15 0.82 13.45 0.77 0.23 7.44
    NBT05-2 3.19 3.11 14.11 0.16 0.88 11.90 0.83 0.36 7.90
    NBT05-3 3.22 3.27 15.68 0.17 0.92 10.25 0.87 0.61 8.67
    NBT06-1 4.72 3.30 16.06 0.26 1.95 5.98 0.73 0.21 7.34
    NBT06-2 4.79 3.31 16.34 0.25 1.99 5.86 0.76 0.22 7.27
    NBT06-3 4.81 3.49 16.48 0.25 1.95 4.80 0.77 0.21 7.74
    NBT07-1 4.07 2.46 14.62 0.24 1.47 11.79 0.62 0.14 6.62
    NBT07-2 4.55 2.31 14.38 0.23 1.56 11.85 0.56 0.14 5.68
    NBT07-3 3.96 2.19 14.15 0.24 1.54 11.92 0.54 0.13 5.57
    NBT09-1 4.69 3.09 16.31 0.23 1.81 2.78 0.76 0.36 7.68
    NBT09-2 4.39 3.06 16.23 0.23 1.81 2.81 0.77 0.27 7.78
    NBT09-3 4.21 2.98 16.50 0.20 1.74 3.01 0.74 0.35 7.81
    NBT10-1 4.93 2.43 15.62 0.24 2.04 4.36 0.53 0.20 5.48
    NBT10-2 4.92 2.33 15.76 0.23 2.13 3.96 0.53 0.21 5.47
    NBT10-3 4.53 2.23 14.89 0.20 1.95 3.83 0.50 0.18 4.88
    下载: 导出CSV

    表 3  新不列颠海沟各区域的表层沉积物微量元素值

    Table 3.  The trace element contents for surface sediments in the New Britain Trench          10-6

    编号 Cs Rb Ba Th U Ta Nb Pb Sr Zr Hf Y Sc
    GC01-1 1.35 25.1 333 1.60 0.96 0.19 2.56 26.0 277 81.0 2.25 22.0 22.5
    GC01-3 1.51 25.9 377 1.86 1.06 0.20 2.92 13.3 327 88.5 2.43 24.1 25.1
    GC02-1 1.01 21.9 313 1.14 0.80 0.14 1.98 8.97 346 79.1 2.10 21.3 21.3
    GC02-3 0.95 20.6 308 1.10 0.78 0.21 1.83 8.28 335 75.1 2.00 20.6 19.5
    BC01-1 0.96 18.7 309 1.12 0.80 0.26 1.93 8.20 357 72.5 1.98 20.6 21.5
    BC01-2 0.90 18.2 298 1.12 0.78 0.12 1.77 8.06 359 71.2 1.91 20.7 19.8
    BC01-5 0.90 18.5 309 1.17 0.76 0.13 1.90 7.58 359 71.6 1.98 21.0 20.8
    NBT01-1 2.21 39.6 197 2.61 0.87 0.28 4.01 8.85 258 85.4 2.22 21.2 26.3
    NBT01-2 2.63 47.4 241 3.06 0.93 0.34 5.02 10.1 301 98.9 2.57 25.4 28.4
    NBT01-3 2.04 38.5 197 2.45 0.89 0.28 4.06 8.10 267 83.9 2.10 21.4 25.8
    NBT02-1 0.83 32.9 371 1.71 0.84 0.32 4.28 7.83 438 76.5 2.05 16.6 14.6
    NBT02-2 0.83 30.4 366 1.73 0.84 0.30 4.00 8.12 420 73.4 2.04 17.9 14.3
    NBT02-3 0.94 32.5 377 1.72 0.86 0.30 4.16 8.61 399 79.2 2.14 17.9 15.7
    NBT03-1 0.95 27.5 272 1.57 0.84 0.24 3.33 9.49 337 77.6 2.02 20.2 21.1
    NBT03-2 0.90 25.5 266 1.51 0.88 0.23 3.11 9.55 327 74.2 2.02 20.9 20.4
    NBT03-3 1.10 29.0 297 1.61 0.91 0.26 3.70 9.59 347 83.5 2.06 21.6 21.5
    NBT05-1 0.60 15.2 156 0.63 0.86 0.10 1.39 6.06 355 62.3 1.52 16.8 25.7
    NBT05-2 0.56 15.1 154 0.66 0.78 0.10 1.40 5.58 340 65.5 1.68 17.9 25.7
    NBT05-3 0.59 16.3 162 0.74 0.74 0.12 1.57 5.91 305 67.0 1.63 17.9 26.6
    NBT06-1 1.03 31.6 257 1.79 0.92 0.28 4.13 9.09 554 79.5 2.00 19.0 18.9
    NBT06-2 1.12 32.6 260 1.88 1.01 0.30 4.44 9.21 554 81.5 2.04 18.7 17.7
    NBT06-3 1.16 31.7 248 1.85 1.01 0.29 4.10 8.61 508 78.7 2.12 19.5 19.1
    NBT07-1 0.54 28.2 335 1.48 0.79 0.34 4.60 6.27 746 67.9 1.84 13.9 12.6
    NBT07-2 0.54 27.3 343 1.44 0.78 0.33 4.50 5.97 762 68.2 1.71 13.7 11.7
    NBT07-3 0.48 25.6 318 1.34 0.72 0.30 4.59 5.73 749 63.2 1.59 14.2 14.6
    NBT09-1 1.41 34.3 341 2.07 1.01 0.34 4.64 11.1 297 93.7 2.37 21.2 20.0
    NBT09-2 1.49 36.8 343 2.24 1.09 0.37 4.97 12.0 307 91.3 2.38 22.4 23.1
    NBT09-3 1.43 34.7 347 2.22 1.08 0.34 4.58 12.3 304 89.9 2.40 23.1 22.3
    NBT10-1 0.98 38.3 418 1.83 0.84 0.38 4.99 9.12 487 74.2 2.09 16.5 13.5
    NBT10-2 1.00 40.1 432 1.95 0.89 0.40 5.25 9.10 456 76.0 2.09 16.5 14.1
    NBT10-3 0.94 36.8 414 1.84 0.86 0.36 4.94 8.26 460 66.4 1.94 15.9 13.0
    下载: 导出CSV

    表 4  新不列颠海沟各区域的表层沉积物稀土元素平均值(×10-6)及相关参数

    Table 4.  The average rare earth element contents and related parameters for surface sediments in the different areas of the new Britain Trench (×10-6

    下载: 导出CSV

    表 5  新不列颠海沟表层沉积物地球化学元素因子分析与相关性分析

    Table 5.  The results factor and correlation analysis for surface sediments from the New Britain Trench

    元素 F1 F2 F3 P2O5 K2O CaO Ta Nb Sr ΣREE
    Na2O 0.044 0.382 -0.302 Na2O 0.41 0.53 -0.27 0.46 0.34 0.26 0.10
    MgO 0.384 0.121 0.885 MgO -0.05 0.08 -0.29 0.04 0.15 -0.42 0.53
    Al2O3 0.467 0.525 0.015 Al2O3 0.51 0.55 -0.74 0.38 0.44 -0.22 0.64
    P2O5 -0.119 0.936 -0.111 P2O5 1.00 0.82 -0.32 0.74 0.80 0.59 0.29
    K2O 0.274 0.911 -0.170 K2O 0.82 1.00 -0.65 0.88 0.90 0.28 0.55
    CaO -0.822 -0.407 0.071 CaO -0.32 -0.65 1.00 -0.49 -0.48 0.48 -0.83
    TiO2 0.304 -0.098 0.921 TiO2 -0.21 -0.20 -0.16 -0.24 -0.12 -0.55 0.39
    MnO 0.043 -0.449 0.095 MnO -0.42 -0.42 -0.02 -0.48 -0.52 -0.50 -0.20
    Fe2O3 0.379 -0.155 0.871 Fe2O3 -0.26 -0.24 -0.18 -0.26 -0.16 -0.58 0.44
    Cs 0.783 0.159 0.521 Cs -0.02 0.27 -0.60 0.26 0.31 -0.53 0.84
    Rb 0.500 0.778 0.136 Rb 0.59 0.85 -0.68 0.84 0.89 0.02 0.73
    Ba 0.265 0.357 -0.847 Ba 0.36 0.51 -0.37 0.59 0.50 0.27 0.21
    Th 0.653 0.637 0.284 Th 0.45 0.71 -0.71 0.70 0.77 -0.14 0.87
    U 0.607 0.387 0.141 U 0.27 0.43 -0.59 0.37 0.42 -0.29 0.75
    Ta 0.222 0.870 -0.208 Ta 0.74 0.88 -0.49 1.00 0.95 0.37 0.47
    Nb 0.190 0.932 -0.072 Nb 0.80 0.90 -0.48 0.95 1.00 0.40 0.51
    Pb 0.539 -0.003 -0.100 Pb 0.06 0.04 -0.45 0.04 0.05 -0.38 0.50
    Sr -0.688 0.500 -0.280 Sr 0.59 0.28 0.48 0.37 0.40 1.00 -0.37
    Zr 0.852 0.276 0.279 Zr 0.15 0.38 -0.72 0.35 0.40 -0.47 0.92
    Hf 0.926 0.253 0.042 Hf 0.14 0.43 -0.80 0.40 0.41 -0.47 0.93
    Y 0.840 -0.296 0.320 Y -0.35 -0.14 -0.54 -0.20 -0.18 -0.78 0.73
    ΣREE 0.861 0.402 0.184 ΣREE 0.29 0.55 -0.83 0.47 0.51 -0.37 1.00
    方差贡献 43.4 27.62 10.23
    累积方差贡献 43.4 71.02 81.25
    下载: 导出CSV
  • [1]

    Wolff T. The concept of the hadal or ultra-abyssal fauna[J]. Deep Sea Research and Oceanographic Abstracts, 1970, 17(6): 983-1003. doi: 10.1016/0011-7471(70)90049-5

    [2]

    Jamieson A J, Fujii T, Mayor D J, et al. Hadal trenches: the ecology of the deepest places on Earth[J]. Trends in Ecology & Evolution, 2010, 25 (3): 190-197. http://cn.bing.com/academic/profile?id=1ec891356117ac6244f7e1c49d5fd6ab&encoded=0&v=paper_preview&mkt=zh-cn

    [3]

    Jamieson A J, Fujii T. Trench connection[J]. Biology Letters, 2011, 7(5): 641-643. doi: 10.1098/rsbl.2011.0231

    [4]

    肖春晖, 王永红, 林间.海沟沉积物研究进展[J].热带海洋学报, 2017, 36(6): 27-38. http://d.old.wanfangdata.com.cn/Periodical/rdhy201706004

    XIAO Chunhui, WANG Yonghong, LIN Jian. Research progress on ocean trench sedimentation [J]. Journal of Tropical Oceanography, 2017, 36 (6): 27-38. http://d.old.wanfangdata.com.cn/Periodical/rdhy201706004

    [5]

    Heuret A, Conrad C P, Funiciello F et al. Relation between subduction megathrust earthquakes, trench sediment thickness and upper plate strain[J]. Geophysical Research Letters, 2012, 39 (5): L05304. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0226367761/

    [6]

    Smith G L, Mcneilll C, Wang Kelin, et al. Thermal structure and megathrust seismogenic potential of the Makran subduction zone[J]. Geophysical Research Letters, 2013, 40 (8): 1528-1533. doi: 10.1002/grl.50374

    [7]

    王汾连, 何高文, 王海峰, 等.马里亚纳海沟柱状沉积物稀土地球化学特征及其指示意义[J].海洋地质与第四纪地质, 2016, 36(4): 67-75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201604008

    WANG Fenlian, HE Gaowen, WANG Haifeng et al. Geochemistry of rare earth elements in a core from mariana trench and its significance [J]. Marine Geology & Quaternary Geology, 2016, 36 (4): 67-75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201604008

    [8]

    Turnewitsch R, Falahat S, Stehlikova J, et al. Recent sediment dynamics in hadal trenches: Evidence for the influence of higher-frequency (tidal, near-inertial) fluid dynamics[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2014, 90: 125-138. doi: 10.1016/j.dsr.2014.05.005

    [9]

    Luo M, Thomas J A, Tong H P et al. More reducing bottom-water redox conditions during the Last Glacial Maximum in the southern Challenger Deep (Mariana Trench, western Pacific) driven by enhanced productivity[J]. Deep-Sea Research Ⅱ, 2017, doi:10.1016/j.dsr2.2017.01.006.

    [10]

    李克让, 周春平, 沙万英.西太平洋暖池基本特征及其对气候的影响[J].地理学报, 1998, 53(6): 511-519. doi: 10.3321/j.issn:0375-5444.1998.06.006

    LI Kerang, ZHOU Chunping, SHA Wanying. Basic features of the warm pool in the western pacific and its impact on climate [J]. Acta Geographica Sinica, 1998, 53(6): 511-519. doi: 10.3321/j.issn:0375-5444.1998.06.006

    [11]

    Lea D W, Pak D K, Spero H J. Climate impact of late quaternary equatorial Pacific sea surface temperature variations[J]. Science, 2000, 289:1719-1724. doi: 10.1126/science.289.5485.1719

    [12]

    Howell D G, Murray R W. A budget for continental growth and denudation[J]. Science, 1986, 233 (4762): 446-449. doi: 10.1126/science.233.4762.446

    [13]

    Hay W W, Sloan J L, Wold C N. Mass/age distribution and composition of sediments on the ocean floor and the global rate of sediment subduction[J]. Journal of Geophysical Research: Solid Earth (1978-2012), 1998, 93 (B12):14933-14940. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/JB093iB12p14933

    [14]

    颜文, 陈木宏, 李春娣, 等.西太平洋暖池近3万年来的沉积序列及其环境特征—WP92-3柱样的REE记录[J].矿物学报, 2006, 26(1): 22-28. doi: 10.3321/j.issn:1000-4734.2006.01.004

    YAN Wen, CHEN Muhong, LI Chundi, et al. The sedimentary sequences during last 30 ka revealed by REE records in core WP92-3 from West Pacific Warm Pool and their environmental implications [J]. Acta Mineralogica Sinica, 2006, 26 (1): 22-38. doi: 10.3321/j.issn:1000-4734.2006.01.004

    [15]

    路波, 李铁刚, 于心科, 等.赤道西太平洋翁通爪哇海台西南部25万年以来的火山活动:来自沉积物元素地球化学的证据[J].地球科学——中国地质大学学报, 2012, 37: 125-133. http://d.old.wanfangdata.com.cn/Periodical/dqkx2012z1012

    LU Bo, LI Tiegang, YU Xinke, et al. Past 250 ka volcanic activities in southwest Ontong Java Plateau, West Equatorial Pacific: Evidences from element geochemistry [J]. Earth Science—Journal of China University of Geosciences, 2012, 37: 125-133. http://d.old.wanfangdata.com.cn/Periodical/dqkx2012z1012

    [16]

    吴家望, 刘志飞, 周超.西太平洋暖池晚第四纪黏土矿物的冰期旋回和岁差周期[J].科学通报, 2012, 57(23): 2145-2157. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201223001

    WU Jiawang, LIU Zhifei, ZHOU Chao. Late Quaternary glacial cycle and precessional period of clay mineral assemblages in the Western Pacific Warm Pool [J]. Chinese Science Bulletin, 2012, 57 (23): 2145-2157. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201223001

    [17]

    Cullers R L. The controls on the major and trace element variation of shales, siltstones and sandstones of Pennsylvanian-Permian age, from uplifted continental block in Colorado to platform sediment in Kansas, USA[J]. Geochimica et Cosmochimica Acta, 1994, 55: 4955-4972.

    [18]

    Munksgaard N C, Lim K, Parry D L. Rare earth elements as provenance indicators in North Australian estuarine and coastal marine sediments[J]. Estuarine, Coastal and Shelf Science. 2003, 57(3): 399-409. doi: 10.1016/S0272-7714(02)00368-2

    [19]

    徐兆凯, 李安春, 李铁刚, 等.东菲律宾海表层沉积物常量元素组成及地质意义[J].海洋地质与第四纪地质, 2010, 30(6): 43-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201006006

    XU Zhaokai, LI Anchun, LI Tiegang, et al. Major element compositions of surface sediments in the east Philippine Sea and its geological implication [J]. Marine Geology & Quaternary Geology, 2010, 30 (6): 43-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201006006

    [20]

    Cooper P, Taylor B. Seismotectonics of New Guinea: A model for arc reversal following arc-continent collision[J]. Tectonics, 1987, 6 (1): 53-67. http://cn.bing.com/academic/profile?id=9147dba73e876cfc7e79f55402feeafe&encoded=0&v=paper_preview&mkt=zh-cn

    [21]

    Johnson R. Geotectonics and volcanism in Papua New Guinea: a review of the late Cainozoic[J]. BMR Journal of Australian Geology and Geophysics, 1979, 4: 181-207. http://cn.bing.com/academic/profile?id=8c8b23f7ce57cdb53eb7c70b51470d18&encoded=0&v=paper_preview&mkt=zh-cn

    [22]

    Davies H L, Price R C. Basalts from the Solomon and Bismarck Seas[J]. Geo-Marine Letters, 1987, 6 (4): 193-202. http://cn.bing.com/academic/profile?id=de6174a147377deab9b7e2052d92253b&encoded=0&v=paper_preview&mkt=zh-cn

    [23]

    Kamenov G D, Perfit M R, Mueller P A, et al. Controls on magmatism in an island arc environment: study of lavas and sub-arc xenoliths from the Tabar-Lihir-Tanga-Feni island chain, Papua New Guinea[J]. Contributions to Mineralogy and Petrology, 2008, 155 (5): 635-656. doi: 10.1007/s00410-007-0262-0

    [24]

    Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations[J]. Journal of Asian Earth Sciences, 2002, 20 (4): 353-431. doi: 10.1016/S1367-9120(01)00069-4

    [25]

    Commission for the Geological Map of the World. Geological World Atlas, Scale 1:10000000[M]. Paris: United Nations Educational, Scientific and Cultural Organization, 1975.

    [26]

    Kaars S V D, Kershaw P, Wang X, et al. A Late Quaternary palaeoecological record from the Banda Sea, Indonesia: Patterns of vegetation, climate and biomass burning in Indonesia and northern Australia[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2000, 155: 135-153. doi: 10.1016/S0031-0182(99)00098-X

    [27]

    Mackey D J, O'Sullivan J E O, Watson R J. Iron in the western Pacific: A riverine or hydrothermal source for iron in the Equatorial Undercurrent[J]. Deep-Sea Research Part I, 2002, 49: 877-893. doi: 10.1016/S0967-0637(01)00075-9

    [28]

    Kershaw A P, Kaars S V D, Moss P T. Late Quaternary Milankovitch-scale climatic change and variability and its impact on monsoonal Australasia[J]. Marine Geology, 2003, 201: 81-95. doi: 10.1016/S0025-3227(03)00210-X

    [29]

    Lindstrom E, Lukas R, Fine R, et al. The Western Equatorial Pacific Ocean Circulation study[J]. Nature, 1987, 330: 533-537. doi: 10.1038/330533a0

    [30]

    Tsuchiya M, Lukas R, Fine R, et al. Source waters of the Pacific Equatorial Undercurrent[J]. Progress Oceanography, 1989, 23: 101-147. doi: 10.1016/0079-6611(89)90012-8

    [31]

    Butt J, Lindstrom E. Currents off the East coast of New Ireland, Papua New Guinea, and their relevance to Regional Undercurrents in the Western Equatorial Pacific Ocean[J]. Journal of Geophysical Research Oceans, 1994, 99: 12503-12514. doi: 10.1029/94JC00399

    [32]

    Fine R A, Lukas R, Bingham F M, et al. The Western Equatorial Pacific: A water mass crossroads[J]. Journal of Geophysical Research Oceans, 1994, 99: 25063-25080. doi: 10.1029/94JC02277

    [33]

    Cresswell G R. Coastal currents of northern Papua New Guinea, and the Sepik River outflow[J]. Marine & Freshwater Research, 2000, 51: 553-564. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=848e94a7e0c76a9d4637afc3c0b29b1d

    [34]

    Cravatte S, Ganachaud A, Duong Q P, et al. Observed circulation in the Solomon Sea from SADCP data[J]. Progress in Oceanography, 2011, 88: 116-130. doi: 10.1016/j.pocean.2010.12.015

    [35]

    William V Boynton. Cosmochemistry of the Rare Earth Elements: Meteorite Studies[J]. Developments in Geochemistry, 1984, 2: 63-114. doi: 10.1016/B978-0-444-42148-7.50008-3

    [36]

    Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution[M]. Blackwell, Malden, 1985:312.

    [37]

    Taylor S R, Mclennan S M. The geochemical evolution of the continental-crust[J]. Reviews of Geophysics, 1995, 33: 241-265. doi: 10.1029/95RG00262

    [38]

    Whitmore G P, Crook K A W, Johnson D P. Grain size control of mineralogy and geochemistry in modern river sediment, New Guinea collision, Papua New Guinea[J]. Sedimentary Geology, 2004, 171: 129-157. doi: 10.1016/j.sedgeo.2004.03.011

    [39]

    Hettler J, Irion G, Lehmann B. Environmental impact of mining waste disposal on a tropical lowland river system: a case study on the Ok Tedi Mine, Papua New Guinea[J]. Mineralium Deposita, 1997, 32: 280-291. doi: 10.1007/s001260050093

    [40]

    Woodhead J D, Johnson R W. Isotopic and trace-element profiles across the New Britain island arc, Papua New Guinea[J]. Contributions to Mineralogy & Petrology, 1993, 113: 479-491. http://cn.bing.com/academic/profile?id=e44ee0a01d9289eb7c96b9fc8724e9e9&encoded=0&v=paper_preview&mkt=zh-cn

    [41]

    Bultitude R J, Johnson R W, Chappell B W. Andesites of Bagana Volcano, Papua New Guinea: Chemical stratigraphy, and a reference andesite composition[J]. Journal of Biomolecular Nmr, 2001, 21 (2). http://cn.bing.com/academic/profile?id=0b81be5f35de9e81a7891c0c5500710d&encoded=0&v=paper_preview&mkt=zh-cn

    [42]

    Wallace D A, Johnson R W, Chappell B W, et al. Cainozoic volcanism of the Tabar, Lihir, Tanga and Feni Islands, Papua New Guinea: Geology, whole-rock analyses, and rock-forming mineral compositions[M]. Bureau Mineral Resources Report 243, Australian Government Publishing Service, 1983: 62.

    [43]

    Kennedy A K, Grove T L, Johnson R W. Experimental and major element constraints on the evolution of lavas from Lihir Island, Papua New Guinea[J]. Contributions to Mineralogy & Petrology, 1990a, 104: 722-734. http://cn.bing.com/academic/profile?id=c678a1d628ae9b01eb347744c2e11a2b&encoded=0&v=paper_preview&mkt=zh-cn

    [44]

    Kennedy A K, Hart S R, Frey F A. Composition and isotopic constraints on the petrogenesis of alkaline arc lavas: Lihir Island, Papua New Guinea[J]. Journal of Geophysical Research Solid Earth, 1990b, 95: 6929-6942. doi: 10.1029/JB095iB05p06929

    [45]

    Gill J B, Morris J D, Johnson R W. Timescale for producing the geochemical signature of island arc magmas: U-Th-Po and Be-B systematics in recent Papua New Guinea lavas[J]. Geochimica et Cosmochimica Acta, 1993, 57: 4269-4283. doi: 10.1016/0016-7037(93)90322-N

    [46]

    Wood C P, Nairn I A, McKee C O, et al. Petrology of the Rabaul Caldera area, Papua New Guinea[J]. Journal of Volcanology and Geothermal Research, 1995, 69: 285-302. doi: 10.1016/0377-0273(95)00034-8

    [47]

    Stracke A, Hegner E. Rifting-related volcanism in an oceanic post-collisional setting: The Tabar-Lihir-Tanga- Feni (TLTF) island chain, Papua New Guinea[J]. Lithos, 1998, 45: 545-560. doi: 10.1016/S0024-4937(98)00049-8

    [48]

    Woodhead J D, Eggins S M, Johnson R W. Magma genesis in the New Britain island arc: Further insights into meltingand mass transfer processes[J]. Journal of Petrology, 1998, 39: 1641-1668. doi: 10.1093/petroj/39.9.1641

    [49]

    Müller D, Franz L, Herzig P M, et al. Potassic igneous rocks from the vicinity of epithermal gold mineralization, Lihir Island, Papua New Guinea[J]. Lithos, 2001, 57: 163-186. doi: 10.1016/S0024-4937(01)00035-4

    [50]

    Pearce, J.A., Parkinson, I.J., 1993. Trace element models for mantle melting: Application to volcanic arc petrogenesis[J]. Magmatic Processes and Plate Tectonics, 1993, 76: 373-403. http://d.old.wanfangdata.com.cn/NSTLQK/10.1144-GSL.SP.1993.076.01.19/

    [51]

    Herzig P, Hannington M, Stoffers P, et al. Volcanism, hydrothermal processes and biological communities at shallow submarine volcanoes of the New Ireland forearc (Papua New Guinea)[R]//Cruise Report SONNE-133, Technische Universitat Bergakademie Freiberg, 1998: 146.

    [52]

    Chadwick J, Perfit M, McInnes B, et al. Arc lavas on both sides of a trench: Slab window effects at the Solomon Islands triple junction, SW Pacific[J]. Earth and Planetary Science Letters, 2009, 279: 293-302. doi: 10.1016/j.epsl.2009.01.001

    [53]

    Heming R F, Rankin P C. Ce-anomalous lavas from Rabaul caldera, Papua New Guinea[J]. Geochimica et Comoschimica Acta, 1979, 43: 1351-1355. doi: 10.1016/0016-7037(79)90125-X

    [54]

    Horz K H, Worthington T J, Winn K, et al. Late Quaternary tephra in the New Ireland Basin, Papua New Guinea[J]. Journal of Volcanology and Geothermal Research, 2004, 132: 73-95. doi: 10.1016/S0377-0273(03)00421-9

    [55]

    Hannigan R E, Sholkovitz E R. The development of middle rare earth element enrichments in freshwaters: weathering of phosphate minerals[J]. Chemical Geology, 2001, 175: 495-508. doi: 10.1016/S0009-2541(00)00355-7

    [56]

    Rollinson. Using Geochemical Data: Evaluation, Presentation Interpretation[M]. Longman Scientific Technical, 1993, 352.

    [57]

    Condie K C, Dengate J, Cullers R L. Behavior of rare earth elements in a paleoweathering profile on granodiorite in the Front Range, Colorado, USA[J]. Geochimica Cosmochimica Acta, 1995, 59: 279-294. doi: 10.1016/0016-7037(94)00280-Y

    [58]

    Sharma A, Rajamani V. Major element, REE and other trace element behavior in amphibolite weathering under semiarid conditions in Southern India[J]. Journal of Geology, 2000, 108: 487-496. doi: 10.1086/314409

    [59]

    Wei G J, Liu Y, Li X H, et al. High-resolution elemental records from the South China Sea and their paleoproductivity implications[J]. Paleoceanography, 2003, 18: 1054-1065. http://d.old.wanfangdata.com.cn/NSTLQK/10.1029-2002PA000826/

    [60]

    Nesbitt H W, Markovics G. Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments[J]. Geochimica Cosmochimica Acta, 1997, 61 (8): 1653-1670. doi: 10.1016/S0016-7037(97)00031-8

    [61]

    Byrne R H, Kim K H. Rare earth element scavenging in seawater[J]. Geochimica Cosmochimica Acta, 1990, 54 (10): 2645-2656. doi: 10.1016/0016-7037(90)90002-3

    [62]

    Freslon N, Bayon G, Toucanne S, et al. Rare earth elements and neodymium isotopes in sedimentary organic matter[J]. Geochimica Cosmochimica Acta, 2014, 140: 177-198. doi: 10.1016/j.gca.2014.05.016

    [63]

    吴梦霜, 邵磊, 庞雄等.南海北部深水区沉积物稀土元素特征及其物源指示意义[J].沉积学报, 2012, 30(4): 672-678. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201204008

    WU Mengshuang, SHAO Lei, PANG Xiong, et al. REE geochemical characteristics of sediments and its implications in the deepwater area of the northern South China Sea [J]. Acta Sedimentologica Sinica, 2012, 30 (4): 672-678. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201204008

    [64]

    Floyd P A, Leveridge B E. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic Sandstones[J]. Journal of the geological society of London, 1987, 144: 531-542. doi: 10.1144/gsjgs.144.4.0531

    [65]

    Nozaki Y, Ohta Y. Rapid and frequent trubidite accumulation in the bottom of Izu-Ogasawwara Trench: chemical and radiochemical evidence[J]. Earth and Planetary Science Letters, 1993, 120: 345-360. doi: 10.1016/0012-821X(93)90249-9

    [66]

    Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic discrimination of sedimentary basins[J]. Contributions to Mineralogy & Petrology, 1986, 92, 181-193. http://cn.bing.com/academic/profile?id=726d14abef54a68355ab0a529dadc6c0&encoded=0&v=paper_preview&mkt=zh-cn

    [67]

    Milliman J D, Syvitski J P M. Geomorphic/Tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers[J]. Journal of Geology, 1992, 100: 525-544. doi: 10.1086/629606

  • 加载中

(8)

(5)

计量
  • 文章访问数:  3548
  • PDF下载数:  144
  • 施引文献:  0
出版历程
收稿日期:  2018-06-07
修回日期:  2018-07-22
刊出日期:  2019-06-28

目录