日本海末次冰期以来沉积作用和环境演化及其控制要素

石学法, 邹建军, 姚政权, 豆汝席, GorbarenkoSergey. 日本海末次冰期以来沉积作用和环境演化及其控制要素[J]. 海洋地质与第四纪地质, 2019, 39(3): 1-11. doi: 10.16562/j.cnki.0256-1492.2019050801
引用本文: 石学法, 邹建军, 姚政权, 豆汝席, GorbarenkoSergey. 日本海末次冰期以来沉积作用和环境演化及其控制要素[J]. 海洋地质与第四纪地质, 2019, 39(3): 1-11. doi: 10.16562/j.cnki.0256-1492.2019050801
SHI Xuefa, ZOU Jianjun, YAO Zhengquan, DOU Ruxi, Gorbarenko Sergey. Sedimentation and environment evolution of the Sea of Japan since the Last Glaciation and its driving forces[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 1-11. doi: 10.16562/j.cnki.0256-1492.2019050801
Citation: SHI Xuefa, ZOU Jianjun, YAO Zhengquan, DOU Ruxi, Gorbarenko Sergey. Sedimentation and environment evolution of the Sea of Japan since the Last Glaciation and its driving forces[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 1-11. doi: 10.16562/j.cnki.0256-1492.2019050801

日本海末次冰期以来沉积作用和环境演化及其控制要素

  • 基金项目:
    国家自然科学基金项目“日本海末次间冰期以来的古环境与古气候演化研究”(41420104005);全球变化与海气相互作用专项“亚洲大陆边缘的古海洋与古地理演化”(GASI-GEOGE-04);青岛海洋科学与技术试点国家实验室鳌山科技创新计划项目(2016ASKJ13);国家基金委-山东海洋科学中心项目“海洋地质过程与环境”(U1606401);“泰山学者”建设工程专项
详细信息
    作者简介: 石学法(1965—),男,研究员,博导,主要从事海洋沉积和海底成矿作用研究. E-mail: xfshi@fio.org.cn
  • 中图分类号: P736.21

  • 文凤英编辑

Sedimentation and environment evolution of the Sea of Japan since the Last Glaciation and its driving forces

  • 基于对日本海南部、中部和西部3个沉积岩芯的综合研究,探讨了末次冰期以来日本海不同区域的沉积作用、环境演化特征及其控制因素。结果发现:在距今8ka以前,日本海南部、中部和西部陆源碎屑物质分别由河流物质、西风携带的风尘物质和海冰输运的物质组成;8ka以来日本海西部沉积物中存在连续分布的火山物质,推测与利曼寒流形成有关,标志着现代日本海表层环流格局的形成。在末次冰期,日本海中部和南部因为水体层化较强,导致底层水通风较弱,而日本海西部则由于盐析作用,通风较强。在冰消期早期,随着海平面上升,东海北部高盐水团再次入侵日本海,改善了日本海深层水体通风条件,但在日本海西部因受到常年海冰覆盖的影响,沉积物氧含量显著减小;在冰消期晚期和早全新世,日本海南部深层水体通风减弱,而在日本海中部和西部通风较好;但8ka以来日本海通风普遍增强。日本海的沉积作用和环境演化受海平面、东亚季风(西风环流)和对马暖流控制,但不同海域对上述3个因子的响应程度存在差异。海平面变化是控制日本海环境变化的首要因子,它直接制约着日本海与周围水体的交换程度;东亚夏季风影响日本海表层水体层化,而东亚冬季风则控制着日本海西部海冰的形成和深层水体垂向对流;8ka以来对马暖流成为控制日本海环境演化的重要因子,它的入侵增强了表层和底层水体交换,提高了日本海深层水体和沉积物溶解氧的更新速率。

  • 加载中
  • 图 1  日本海现代表层环流示意图及研究站位分布图

    Figure 1. 

    图 2  沉积物平均粒径时间序列剖面

    Figure 2. 

    图 3  氧化还原敏感指标Mo/Mn比值和TOC、Cd/Al时间序列剖面

    Figure 3. 

    图 4  KCES1岩芯稀土元素及δEu和δCe异常原时间序列剖面

    Figure 4. 

    图 5  LV53-23岩芯稀土元素及δEu和δCe异常原时间序列剖面

    Figure 5. 

    图 6  LV53-18岩芯稀土元素及δEu和δCe异常原时间序列剖面

    Figure 6. 

    图 7  KCES1,LV53-23和LV53-18沉积岩芯Cr-Th/Sc相关散点图

    Figure 7. 

    图 8  KCES1,LV53-23和LV53-18沉积岩芯(Sm)N-(Nd)N相关散点图

    Figure 8. 

    图 9  KCES1,LV53-23和LV53-18沉积岩芯Zr/Sc和Th/Sc相关散点图

    Figure 9. 

    图 10  沉积岩芯中平均粒径和氧化还原敏感指标时间序列与中国石笋δ18O[35]、30°N夏季日照[44],海平面[45]和湖光玛珥湖硅藻丰度比值[43]曲线对比

    Figure 10. 

  • [1]

    Wang P X. Response of western Pacific marginal seas to glacial cycles: paleoceanographic and sedimentological features[J]. Marine Geology, 1999, 156(1-4):5-39. doi: 10.1016/S0025-3227(98)00172-8

    [2]

    Tada R. Paleoceanographic evolution of the Japan Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 108(3-4):487-508. doi: 10.1016/0031-0182(94)90248-8

    [3]

    Tada R, Murray R W, Alvarez Zarikian C A, et al. Proc. IODP, 346[C]. College Station, TX, United States: IODP Management International, 2015.

    [4]

    Tamaki K, Pisciotto K A, Allan J, et al. Proc. ODP, Init. Repts., 127[C]. Vol. 127 College Station, TX (Ocean Drilling Program): ODP Management International, 1990.

    [5]

    Bouma A H. Sedimentary structures of Philippine Sea and Sea of Japan sediments, DSDP Leg 31[J]. Initial Reports of the Deep Sea Drilling Project, 1975, 31:471.

    [6]

    Tada R, Oba T, Jordan R W. Quaternary paleoceanography of the Japan Sea and its linkage with Asian Monsoon[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 247(1-2):1-4. doi: 10.1016/j.palaeo.2006.11.017

    [7]

    Oba T, M. K, H. K, et al. Paleoenvironmental changes in the Japan Sea during the last 85000 years[J]. Paleoceanography, 1991, 6(4):499-518. doi: 10.1029/91PA00560

    [8]

    Tada R, Irino T, Ikehara K, et al. High-resolution and high-precision correlation of dark and light layers in the Quaternary hemipelagic sediments of the Japan Sea recovered during IODP Expedition 346[J]. Progress in Earth and Planetary Science, 2018, 5(1):19, doi:10.1186/s40645-40018-40167-40648.

    [9]

    Tada R. Onset and evolution of millennial-scale variability in the Asian monsoon and its impact on paleoceanography of the Japan Sea[J]. Continent-Ocean Interactions within East Asian Marginal Seas, 2004, 149:283-298. doi: 10.1029/GM149

    [10]

    Nagashima K, Tada R, Tani A, et al. Contribution of aeolian dust in Japan Sea sediments estimated from ESR signal intensity and crystallinity of quartz[J]. Geochemistry Geophysics Geosystems, 2007, 8(2):13, doi:10.1029/2006gc001364.

    [11]

    Zou J, Shi X, Liu Y, et al. Reconstruction of environmental changes using a multi-proxy approach in the Ulleung Basin (Sea of Japan) over the last 48 ka[J]. Journal of Quaternary Science, 2012, 27(9):891-900. doi: 10.1002/jqs.v27.9

    [12]

    Yao Z, Liu Y, Shi X, et al. Paleoenvironmental changes in the East/Japan Sea during the last 48 ka: indications from high-resolution X-ray fluorescence core scanning[J]. Journal of Quaternary Science, 2012, 27(9):932-940. doi: 10.1002/jqs.v27.9

    [13]

    Yanai S, Aoki K, Akahori Y. Opening of Japan Sea and Major Tectonic Lines of Japan MTL, TTL and Fossa Magna[J]. Journal of Geography (Chigaku Zasshi), 2010, 119(6):1079-1124. doi: 10.5026/jgeography.119.1079

    [14]

    Liu Y, Sha L, Shi X, et al. Depositional environment in the southern Ulleung Basin, East Sea (Sea of Japan), during the last 48 000 years[J]. Acta Oceanologica Sinica, 2010, 29(5):52-64. doi: 10.1007/s13131-010-0063-6

    [15]

    董智, 石学法, 葛晨东, et al.日本海中部60ka以来的风尘沉积对西风环流演化的指示[J].科学通报, 2017, 62(11):1172-1184. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201711011

    DONG Zhi, SHI Xuefa, GeChendong, et al. Evolution of westernly jet during the last 1160ka: Evidence from core deposits in the central Japan (East) Sea[J]. Chinese Science Bulletin, 2017, 62(11): 1172-1184. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201711011

    [16]

    Yang L, Long H, Yi L, et al. Luminescence dating of marine sediments from the Sea of Japan using quartz OSL and polymineral pIRIR signals of fine grains[J]. Quaternary Geochronology, 2015, 30:257-263. doi: 10.1016/j.quageo.2015.05.003

    [17]

    Ge S, Shi X, Liu Y, et al. Turbidite and bottom-current evolution revealed by anisotropy of magnetic susceptibility of redox sediments in the Ulleung Basin, Sea of Japan[J]. Chinese Science Bulletin, 2012, 57(6):660-672. doi: 10.1007/s11434-011-4812-5

    [18]

    Chen J, Liu Y, Shi X, et al. Climate and environmental changes for the past 44 ka clarified by pollen and algae composition in the Ulleung Basin, East Sea (Japan Sea)[J]. Quaternary International, 2017, 441, Part A:162-173. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3a9e15ec03f321f395e2b4d74abc3602

    [19]

    Liu Y, Chen J, Chen J, et al. Variations of alkenone temperature in the Sea of Japan during the last 170 ka and its paleoceanographic implications[J]. Chinese Science Bulletin, 2014:1-12. http://cn.bing.com/academic/profile?id=a9c76d876d31a4ef5ea4cbf78be59551&encoded=0&v=paper_preview&mkt=zh-cn

    [20]

    Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1-2):12-32. doi: 10.1016/j.chemgeo.2006.02.012

    [21]

    Algeo T J, Lyons T W. Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography, 2006, 21(1):PA1016, doi: 1010.1029/2004pa001112. http://cn.bing.com/academic/profile?id=61e520c5a35f3095158640e9c79fd2ad&encoded=0&v=paper_preview&mkt=zh-cn

    [22]

    Schubert C J, Stein R. Deposition of organic carbon in Arctic Ocean sediments: terrigenous supply vs marine productivity[J]. Organic Geochemistry, 1996, 24(4):421-436. doi: 10.1016/0146-6380(96)00042-3

    [23]

    Frei R, Gaucher C. Chromium isotopes in the marine environment through time-A suitable paleoredox tracer?[J]. Geochimica Et Cosmochimica Acta, 2008, 72(12):A283-A283. http://cn.bing.com/academic/profile?id=5f6b0889cb2d26bf41a5753209cadd26&encoded=0&v=paper_preview&mkt=zh-cn

    [24]

    Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution[M]. Blackwell Scientific Publicity, Oxford, 1985.

    [25]

    Taylor S R, McLennan S M, Chemical Composition and Element Distribution in the Earth's Crust, in Encyclopedia of Physical Science and Technology (Third Edition)[M]. Ed. by Meyers R A (New York: Academic Press), 2003: 697-719.

    [26]

    Khim B K, Bahk J J, Hyun S, et al. Late Pleistocene dark laminated mud layers from the Korea Plateau, western East Sea/Japan Sea, and their paleoceanographic implications[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2007, 247(1-2):74-87. doi: 10.1016/j.palaeo.2006.11.029

    [27]

    Tada R, Koizumi I, Cramp A, et al. Correlation of dark and light layers, and the origin of their cyclicity in the Quaternary sediments from the Japan Sea[C]. Proc. Ocean Drill. Program Sci. Results 127/128, 1992: 577-601.

    [28]

    Crusius J, Pedersen T F, Calvert S E, et al. A 36 kyr geochemical record from the Sea of Japan of organic matter flux variations and changes in intermediate water oxygen concentrations[J]. Paleoceanography, 1999, 14(2):248-259. doi: 10.1029/1998PA900023

    [29]

    Li T G, Sun R T, Zhang D Y, et al. Evolution and variation of the Tsushima warm current during the late Quaternary: Evidence from planktonic foraminifera, oxygen and carbon isotopes[J]. Science in China—Earth Sciences, 2007, 50(5):725-735. doi: 10.1007/s11430-007-0003-2

    [30]

    Itaki T, Ikehara K, Motoyama I, et al. Abrupt ventilation changes in the Japan Sea over the last 30 ky: evidence from deep-dwelling radiolarians[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2004, 208(3-4):263-278. doi: 10.1016/j.palaeo.2004.03.010

    [31]

    Itaki T, Komatsu N, Motoyama I. Orbital- and millennial-scale changes of radiolarian assemblages during the last 220 kyrs in the Japan Sea[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2007, 247(1-2):115-130. doi: 10.1016/j.palaeo.2006.11.025

    [32]

    Gorbarenko S A, Southon J R. Detailed Japan Sea paleoceanography during the last 25 kyr: Constraints from AMS dating and delta O-18 of planktonic foraminifera[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2000, 156(3-4):177-193. doi: 10.1016/S0031-0182(99)00137-6

    [33]

    Keigwin L, Gorbarenko S. Sea level, surface salinity of the Japan Sea, and the Younger Dryas event in the northwestern Pacific Ocean[J]. Quaternary Research, 1992, 37(3):346-360. doi: 10.1016/0033-5894(92)90072-Q

    [34]

    Lee E, Kim S, Nam S. Paleo-Tsushima Water and its effect on surface water properties in the East Sea during the last glacial maximum: Revisited[J]. Quaternary International, 2008, 176:3-12.

    [35]

    Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640000 years and ice age terminations[J]. Nature, 2016, 534:640. doi: 10.1038/nature18591

    [36]

    Talley L D, Tishchenko P, Luchin V, et al. Atlas of Japan (East) Sea hydrographic properties in summer, 1999[J]. Progress in Oceanography, 2004, 61(2):277-348. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b3ceb9d94dfe330b7aa45ad2ce8d63a6

    [37]

    Yokoyama Y, Esat T M, Thompson W G, et al. Rapid glaciation and a two-step sea level plunge into the Last Glacial Maximum[J]. Nature, 2018, 559(7715):603-607. doi: 10.1038/s41586-018-0335-4

    [38]

    Webster J M, Braga J C, Humblet M, et al. Response of the Great Barrier Reef to sea-level and environmental changes over the past 30, 000 years[J]. Nature Geoscience, 2018, 11(6):426-432. doi: 10.1038/s41561-018-0127-3

    [39]

    Nagashima K, Tada R, Tani A, et al. Millennial-scale oscillations of the westerly jet path during the last glacial period[J]. Journal of Asian Earth Sciences, 2011, 40(6):1214-1220. doi: 10.1016/j.jseaes.2010.08.010

    [40]

    Sun Y, Clemens S C, Morrill C, et al. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon[J]. Nature Geoscience, 2011, 5:46. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz-e201809009

    [41]

    McManus J F, Francois R, Gherardi J M, et al. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes[J]. Nature, 2004, 428(6985):834-837. doi: 10.1038/nature02494

    [42]

    Deschamps P, Durand N, Bard E, et al. Ice-sheet collapse and sea-level rise at the Bølling warming 14600 years ago[J]. Nature, 2012, 483:559. doi: 10.1038/nature10902

    [43]

    Wang L, Li J, Lu H, et al. The East Asian winter monsoon over the last 15, 000 years: its links to high-latitudes and tropical climate systems and complex correlation to the summer monsoon[J]. Quaternary Science Reviews, 2012, 32:131-142. doi: 10.1016/j.quascirev.2011.11.003

    [44]

    Berger A, Loutre M F. Insolation values for the climate of the last 10 million years[J]. Quaternary Science Reviews, 1991, 10(4):297-317. doi: 10.1016/0277-3791(91)90033-Q

    [45]

    Spratt R M, Lisiecki L E. A Late Pleistocene sea level stack[J]. Climate of the Past, 2016, 12(4):1079-1092. doi: 10.5194/cp-12-1079-2016

  • 加载中

(10)

计量
  • 文章访问数:  4023
  • PDF下载数:  159
  • 施引文献:  0
出版历程
收稿日期:  2019-05-08
修回日期:  2019-05-10
刊出日期:  2019-06-28

目录