热水驱替开采Ⅱ类水合物藏规律研究

夏志增, 王学武, 时凤霞, 郭瑾. 热水驱替开采Ⅱ类水合物藏规律研究[J]. 海洋地质与第四纪地质, 2020, 40(2): 158-164. doi: 10.16562/j.cnki.0256-1492.2018102603
引用本文: 夏志增, 王学武, 时凤霞, 郭瑾. 热水驱替开采Ⅱ类水合物藏规律研究[J]. 海洋地质与第四纪地质, 2020, 40(2): 158-164. doi: 10.16562/j.cnki.0256-1492.2018102603
XIA Zhizeng, WANG Xuewu, SHI Fengxia, GUO Jin. Study of production of Class Ⅱ hydrate reservoir by hot water flooding[J]. Marine Geology & Quaternary Geology, 2020, 40(2): 158-164. doi: 10.16562/j.cnki.0256-1492.2018102603
Citation: XIA Zhizeng, WANG Xuewu, SHI Fengxia, GUO Jin. Study of production of Class Ⅱ hydrate reservoir by hot water flooding[J]. Marine Geology & Quaternary Geology, 2020, 40(2): 158-164. doi: 10.16562/j.cnki.0256-1492.2018102603

热水驱替开采Ⅱ类水合物藏规律研究

  • 基金项目: 国家科技重大专项项目“典型超低渗透油藏不同注入介质动用界限研究”(2017ZX05013-001);中国石油大学胜利学院校级项目“CO2置换开采天然气水合物藏数值模拟研究”(KY2018018)
详细信息
    作者简介: 夏志增(1989—),男,讲师,研究方向为油气田开发理论与系统工程,E-mail:xzz_cn@aliyun.com
  • 中图分类号: P74,TE37

Study of production of Class Ⅱ hydrate reservoir by hot water flooding

  • 天然气水合物广泛分布于陆地冻土带和深海地层,资源潜力巨大,其中Ⅱ类水合物藏占有重要地位。为加强对Ⅱ类水合物藏开采规律的认识,结合实际水合物藏参数,使用数值模拟方法研究了热水驱替开采Ⅱ类水合物藏的动态规律,并与降压法的开采效果进行了对比分析。结果表明:①热水驱替开采Ⅱ类水合物藏时,产气速率和分解气速率首先快速上升,然后以较快速度下降至趋于相对稳定;累产气和累分解气上升较快;气体采出程度和水合物分解程度均处于较高水平(>60%)。②热水驱替对Ⅱ类水合藏的开采具有一定的适应性,与降压法开采相比,热水驱替方式下储层水合物的分解更彻底,气体采出程度、水合物分解程度也更优,但具有较低的累积气水比,产水量较大。

  • 加载中
  • 图 1  水合物藏类型示意图(据文献[7]修改)

    Figure 1. 

    图 2  热水驱替法开采Ⅱ类水合物藏示意图

    Figure 2. 

    图 3  基础模型示意图

    Figure 3. 

    图 4  产气速率和累产气

    Figure 4. 

    图 5  分解气速率和累分解气

    Figure 5. 

    图 6  温度场 (为展示储层温度的变化,示意图中只显示了部分网格)

    Figure 6. 

    图 7  水合物饱和度场

    Figure 7. 

    图 8  气体采出程度、水合物分解程度和累积气水比

    Figure 8. 

    表 1  基础模型参数

    Table 1.  Basic model parameters of the Class Ⅱ hydrate reservoir

    参数水合物层下伏水层顶底非渗透层
    厚度/m151530
    绝对渗透率/10−3 μm21 0001 0000
    孔隙度0.350.350
    水合物饱和度0.70
    含水饱和度0.31
    底部初始压力/MPa10.67
    底部初始温度/℃13.3
    温度梯度/(℃/100 m)3.0
    束缚水饱和度0.20
    束缚气饱和度0.02
    下载: 导出CSV
  • [1]

    Bayles G A, Sawyer W K, Anada H R, et al. A steam cycling model for gas production from a hydrate reservoir [J]. Chemical Engineering Communications, 1986, 47(4-6): 225-245. doi: 10.1080/00986448608911766

    [2]

    王屹, 李小森. 天然气水合物开采技术研究进展[J]. 新能源进展, 2013, 1(1):69-79 doi: 10.3969/j.issn.2095-560X.2013.01.007

    WANG Yi, LI Xiaosen. Research progress of natural gas hydrate production technology [J]. Advances in New and Renewable Energy, 2013, 1(1): 69-79. doi: 10.3969/j.issn.2095-560X.2013.01.007

    [3]

    张金华, 魏伟, 王红岩. 天然气水合物研究进展与开发技术概述[J]. 天然气技术, 2009, 3(2):67-69

    ZHANG Jinhua, WEI Wei, WANG Hongyan. Research on gas hydrate and its development techniques [J]. Natural Gas Technology, 2009, 3(2): 67-69.

    [4]

    Moridis G J, Collett T S. Strategies for gas production from hydrate accumulations under various geologic conditions[C]//Proceedings of TOUGH Symposium. Berkeley: Lawrence Berkeley National Laboratory, 2003.

    [5]

    Moridis G J, Sloan E D. Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments [J]. Energy Conversion and Management, 2007, 48(6): 1834-1849. doi: 10.1016/j.enconman.2007.01.023

    [6]

    Moridis G J, Reagan M T. Gas production from class 2 hydrate accumulations in the permafrost[C]//Proceedings of SPE Annual Technical Conference and Exhibition. Anaheim, California, USA: Society of Petroleum Engineers, 2007.

    [7]

    Xia Z Z, Hou J, Liu Y G, et al. Production characteristic investigation of the Class Ⅰ, Class Ⅱ and Class Ⅲ hydrate reservoirs developed by the depressurization and thermal stimulation combined method [J]. Journal of Petroleum Science and Engineering, 2017, 157: 56-67. doi: 10.1016/j.petrol.2017.07.012

    [8]

    Holder G D, Angert P F. Simulation of gas production from a reservoir containing both gas hydrates and free natural gas[C]//Proceedings of SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana, USA: Society of Petroleum Engineers, 1982.

    [9]

    McGuire P L. Methane hydrate gas production by thermal stimulation[C]//Proceedings of the Fourth Canadian Permafrost Conference. Calgary, Alberta, Canada, 1981.

    [10]

    Sloan E D, Koh C. Clathrate Hydrates of Natural Gases[M]. 3rd ed. New York: CRC press, 2007.

    [11]

    Sun Y H, Li B, Guo W, et al. Comparative analysis of the production trial and numerical simulations of gas production from multilayer hydrate deposits in the Qilian Mountain permafrost [J]. Journal of Natural Gas Science and Engineering, 2014, 21: 456-466. doi: 10.1016/j.jngse.2014.09.005

    [12]

    Li X S, Xu C G, Zhang Y, et al. Investigation into gas production from natural gas hydrate: a review [J]. Applied Energy, 2016, 172: 286-322. doi: 10.1016/j.apenergy.2016.03.101

    [13]

    刘昌岭, 李彦龙, 孙建业, 等. 天然气水合物试采: 从实验模拟到场地实施[J]. 海洋地质与第四纪地质, 2017, 37(5):12-26

    LIU Changling, LI Yanlong, SUN Jianye, et al. Gas hydrate production test: from experimental simulation to field practice [J]. Marine Geology & Quaternary Geology, 2017, 37(5): 12-26.

    [14]

    张炜, 邵明娟, 姜重昕, 等. 世界天然气水合物钻探历程与试采进展[J]. 海洋地质与第四纪地质, 2018, 38(5):1-13

    ZHANG Wei, SHAO Mingjuan, JIANG Chongxin, et al. World progress of drilling and production test of natural gas hydrate [J]. Marine Geology & Quaternary Geology, 2018, 38(5): 1-13.

    [15]

    Moridis G J, Kowalsky M. Depressurization-induced gas production from Class 1 and Class 2 hydrate deposits[C]//Proceedings of TOUGH Symposium. Berkeley, California: Lawrence Berkeley National Laboratory, 2006.

    [16]

    Gao Y, Yang M J, Zheng J N, et al. Production characteristics of two class water-excess methane hydrate deposits during depressurization [J]. Fuel, 2018, 232: 99-107. doi: 10.1016/j.fuel.2018.05.137

    [17]

    杨圣文. 天然气水合物开采模拟与能效分析[D]. 华南理工大学博士学位论文, 2013.

    YANG Shengwen. Simulation and energy efficiency analysis of gas production from hydrates[D]. Doctor Dissertation of South China University of Technology, 2013.

    [18]

    Moridis G J, Reagan M T. Estimating the upper limit of gas production from Class 2 hydrate accumulations in the permafrost: 2. Alternative well designs and sensitivity analysis [J]. Journal of Petroleum Science and Engineering, 2011, 76(3-4): 124-137. doi: 10.1016/j.petrol.2010.12.001

    [19]

    Reagan M T, Moridis G J, Zhang K N. Sensitivity analysis of gas production from class 2 and class 3 hydrate deposits[C]//Proceedings of Offshore Technology Conference. Houston, Texas, USA: Offshore Technology Conference, 2008.

    [20]

    Feng J C, Wang Y, Li X S, et al. Production behaviors and heat transfer characteristics of methane hydrate dissociation by depressurization in conjunction with warm water stimulation with dual horizontal wells [J]. Energy, 2015, 79: 315-324. doi: 10.1016/j.energy.2014.11.018

    [21]

    Bai Y H, Li Q P. Simulation of gas production from hydrate reservoir by the combination of warm water flooding and depressurization [J]. Science China Technological Sciences, 2010, 53(9): 2469-2476. doi: 10.1007/s11431-010-4036-y

    [22]

    Moridis G J. Numerical studies of gas production from class 2 and class 3 hydrate accumulations at the Mallik Site, Mackenzie Delta, Canada [J]. SPE Reservoir Evaluation & Engineering, 2004, 7(3): 175-183.

    [23]

    Moridis G J, Kowalsky M B, Pruess K. HydrateResSim User's Manual: A Numerical Simulator for Modeling the Behavior of Hydrates in Geologic Media[M]. Berkeley: USA, Lawrence Berkeley National Laboratory, 2005.

    [24]

    Gamwo I K., Liu Y Mathematical modeling and numerical simulation of methane production in a hydrate reservoir [J]. Industrial & Engineering Chemistry Research, 2010, 49(11): 5231-5245.

    [25]

    Moridis G J, Reagan M T, Kim S J, et al. Evaluation of the gas production potential of marine hydrate deposits in the Ulleung Basin of the Korean East Sea [J]. SPE Journal, 2009, 14(4): 759-781. doi: 10.2118/110859-PA

    [26]

    Moridis G J, Reagan M T. Estimating the upper limit of gas production from class 2 hydrate accumulations in the permafrost: 1. concepts, system description, and the production base case [J]. Journal of Petroleum Science and Engineering, 2011, 76(3-4): 194-204. doi: 10.1016/j.petrol.2010.11.023

    [27]

    Zhao J F, Liu D, Yang M J, et al. Analysis of heat transfer effects on gas production from methane hydrate by depressurization [J]. International Journal of Heat and Mass Transfer, 2014, 77: 529-541. doi: 10.1016/j.ijheatmasstransfer.2014.05.034

    [28]

    Moridis G J, Kowalsky M B, Pruess K. Depressurization-induced gas production from class-1 hydrate deposits [J]. SPE Reservoir Evaluation & Engineering, 2007, 10(5): 458-481.

  • 加载中

(8)

(1)

计量
  • 文章访问数:  1585
  • PDF下载数:  50
  • 施引文献:  0
出版历程
收稿日期:  2018-10-26
修回日期:  2019-03-14
刊出日期:  2020-04-25

目录