南海北部台湾峡谷“蛟龙号”第140潜次沉积物特征及其沉积过程指示意义

李梦君, 毕乃双, 胡丽沙, 刘晓航, 徐景平. 南海北部台湾峡谷“蛟龙号”第140潜次沉积物特征及其沉积过程指示意义[J]. 海洋地质与第四纪地质, 2019, 39(4): 23-33. doi: 10.16562/j.cnki.0256-1492.2018121401
引用本文: 李梦君, 毕乃双, 胡丽沙, 刘晓航, 徐景平. 南海北部台湾峡谷“蛟龙号”第140潜次沉积物特征及其沉积过程指示意义[J]. 海洋地质与第四纪地质, 2019, 39(4): 23-33. doi: 10.16562/j.cnki.0256-1492.2018121401
LI Mengjun, BI Naishang, HU Lisha, LIU Xiaohang, XU Jingping. Sedimentary characteristics and processes revealed by the push cores of the 140th dive of DSV 'Jiaolong' in the Taiwan Submarine Canyon, Northern South China Sea[J]. Marine Geology & Quaternary Geology, 2019, 39(4): 23-33. doi: 10.16562/j.cnki.0256-1492.2018121401
Citation: LI Mengjun, BI Naishang, HU Lisha, LIU Xiaohang, XU Jingping. Sedimentary characteristics and processes revealed by the push cores of the 140th dive of DSV "Jiaolong" in the Taiwan Submarine Canyon, Northern South China Sea[J]. Marine Geology & Quaternary Geology, 2019, 39(4): 23-33. doi: 10.16562/j.cnki.0256-1492.2018121401

南海北部台湾峡谷“蛟龙号”第140潜次沉积物特征及其沉积过程指示意义

  • 基金项目:
    青岛海洋科学与技术国家实验室鳌山科技创新计划项目“基于蛟龙号深潜的南海若干关键地质与生物过程研究”(2016ASKJ05)
详细信息
    作者简介: 李梦君(1992—),女,硕士研究生,研究方向为海洋沉积学, E-mail:limj819@163.com
    通讯作者: 徐景平,男,教授,博士生导师,主要从事海洋沉积动力学研究,E-mail: xujp@sustc.edu.cn
  • 中图分类号: P736.21

  • 文凤英编辑

Sedimentary characteristics and processes revealed by the push cores of the 140th dive of DSV "Jiaolong" in the Taiwan Submarine Canyon, Northern South China Sea

More Information
  • 海底峡谷沉积物来源、输运机制和沉积过程的研究一直是深水沉积体系研究的关键,也是近年来深海浊流沉积研究中的热点问题。对“蛟龙号”第140潜次在南海北部台湾峡谷中段3个站位获取的沉积物短柱的粒度、有孔虫和黏土矿物进行综合分析,结果表明3个短柱上部均以粒度较细、变化较小并含半深海—深海环境的底栖有孔虫为特征的半深海沉积,下部以粒度明显变粗、含有较多浅水种底栖有孔虫的浊流沉积为主。AMS14C测年结果显示该浊流沉积形成于约150aBP,表明台湾峡谷中段有典型的近现代浊流活动。此外,黏土矿物组成表明研究区正常半深海沉积与浊流沉积物源主要来自台湾,其次为珠江和吕宋岛的碎屑沉积物。

  • 加载中
  • 图 1  南海地形图

    Figure 1. 

    图 2  台湾峡谷“蛟龙号”第140潜次深潜路线图(A)及沿峡谷方向调查测线地形变化图(B)

    Figure 2. 

    图 3  #3(A)、#3a(B)和#4(C)短柱沉积物粒度参数垂向变化特征

    Figure 3. 

    图 4  底栖有孔虫扫描电镜图

    Figure 4. 

    图 5  #3(A)、#3a(B)和#4(C)站位黏土矿物垂向组成特征

    Figure 5. 

    图 6  短柱沉积物黏土矿物组合与邻近潜在物源区样品黏土矿物含量对比的三角端元图

    Figure 6. 

    表 1  台湾峡谷“蛟龙号”第140潜次短柱样品信息

    Table 1.  Information of the push cores collected during the 140th dive of DSV Jiaolong in the Taiwan Submarine Canyon

    短柱编号 北纬(N) 东经(E) 水深/m 长度/cm
    #3 21°20.00′ 119°0.62′ 2935 13.0
    #3a 21°19.83′ 119°0.82′ 2961 14.1
    #4 21°19.64′ 119°0.98′ 2985 14.5
    下载: 导出CSV

    表 2  短柱底栖有孔虫主要特征种属含量

    Table 2.  Relative abundance of benthic foraminifera in the push cores

    短柱 层位/cm 内陆架 外陆架 外陆架-半深海 半深海-深海 深海 外陆架-深海
    1~2 15.4 7.7 19.2 26.9 30.8
    #3 7~8 4.0 36.0 8.8 6.4 44.8
    12~13 17.1 35.2 1.9 2.8 43.0
    1~2 6.8 1.4 34.2 57.6
    #3a 6~7 4.3 17.4 78.3
    13~14 0.9 9.4 17.9 8.5 63.3
    1~2 11.1 16.7 5.6 66.6
    #4 6~7 2.6 3.8 45.9 47.7
    11~12 7.9 35.2 3.4 3.4 50.1
    13.5~14.5 8.5 31.4 3.4 56.7
    内陆架主要为Elphidium advenumFlorilus scaphumPseudorotalia schroeteriana
    外陆架主要为Bolivina robustaBrizalina sp.、Brizalina striatulaHanjawaia mantanensis
    外陆架—半深海主要为Eggerella bradyiGlobocassidulina subglobosaPlanulina wuellerstorfi
    半深海—深海主要为Bulimina aculeataEpistominella exigua
    深海主要为Rhabdammina sp.
    下载: 导出CSV

    表 3  #3,#3a和#4短柱黏土矿物组成特征

    Table 3.  Clay mineral content of the push cores

    短柱 层位/cm 蒙脱石/% 伊利石/% 高岭石/% 绿泥石/% 伊利石化学指数 伊利石结晶度/(°)Δ2θ
    0~1 3.8 70.3 5.9 20.0 0.26 0.33
    2~3 3.8 69.0 7.1 20.2 0.25 0.29
    4~5 8.2 64.7 4.8 22.3 0.30 0.29
    #3 6~7 7.1 65.7 4.3 23.0 0.32 0.29
    8~9 8.0 64.8 4.6 22.6 0.20 0.30
    10~11 6.6 65.1 7.8 20.6 0.27 0.28
    11~12 16.6 57.6 5.5 20.4 0.29 0.28
    0~1 4.0 67.5 6.3 22.2 0.29 0.29
    2~3 6.1 65.2 5.0 23.7 0.27 2~3
    4~5 16.4 58.8 7.8 17.0 0.28 0.29
    #3a 6~7 15.3 58.7 6.4 19.6 0.28 6~7
    8~9 19.0 56.5 6.8 17.8 0.29 0.32
    10~11 14.2 61.0 7.1 17.8 0.27 0.30
    12~13 14.5 60.3 10.1 15.1 0.27 0.32
    0~1 2.0 72.3 5.6 20.1 0.29 0.30
    2~3 5.3 68.0 6.2 20.4 0.29 0.29
    4~5 14.4 59.5 6.3 19.9 0.29 0.30
    6~7 12.2 60.4 7.0 20.4 0.26 6~7
    #4 7~8 11.6 61.6 7.8 19.1 0.27 0.28
    9~10 12.8 60.5 6.9 19.8 0.29 0.27
    10~11 16.8 59.7 6.2 17.2 0.26 0.32
    12~13 16.6 58.8 6.7 17.9 0.32 0.27
    下载: 导出CSV
  • [1]

    Harris P T, Whiteway T. Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins [J]. Marine Geology, 2011, 285(1-4): 69-86. doi: 10.1016/j.margeo.2011.05.008

    [2]

    Mchugh C M G, Damuth J E, Mountain G S. Cenozoic mass-transport facies and their correlation with relative sea-level change, New Jersey continental margin[J]. Marine Geology, 2002, 184(3): 295-334. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=93a97b61cc82972ffac2471a8f36537f

    [3]

    Daly R A. Origin of submarine canyons[J]. Amer. J. Sei. 5th. Ser., 1936, 31: 401-420. http://d.old.wanfangdata.com.cn/NSTLQK/10.2475-ajs.s5-31.186.401/

    [4]

    毛凯楠, 解习农.深水峡谷体系研究现状及其地质意义[J].地质科技情报, 2014, 33(2): 21-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201402004

    MAO Kainan, XIE Xinong. Research reviews of submarine canyons system and its geological significance [J]. Geoloical Scinence and Technology Information, 2014, 33(2): 21-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201402004

    [5]

    徐景平.海底浊流研究百年回顾[J].中国海洋大学学报:自然科学版, 2014, 44(10): 98-105. http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb201410014

    XU Jingping. Turbidity current research in the past century: An overview [J]. Periodical of Ocean University of China, 2014, 44(10): 98-105. http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb201410014

    [6]

    Carter L, Milliman J D, Talling P J, et al. Near-synchronous and delayed initiation of long run-out submarine sediment flows from a record-breaking river flood, offshore Taiwan [J]. Geophysical Research Letters, 2012, 39(12): L12603. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=552863899f083583c4c2839fc4a8f185

    [7]

    Hsu S, Kuo J, Lo C, et al. Turbidity currents, submarine landslides and the 2006 Pingtung Earthquake off SW Taiwan[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2008, 19(6):767-772. doi: 10.3319/TAO.2008.19.6.767(PT)

    [8]

    Liu J, Wang Y, Yang R, et al. Cyclone-induced hyperpycnal turbidity currents in a submarine canyon [J]. Journal of Geophysical Research: Oceans, 2012, 117(4): C04033. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c3a8a10fb7a1d126f09f194ff50ed464

    [9]

    蔡学林, 朱介寿, 曹家敏, 等.东亚西太平洋巨型裂谷体系岩石圈与软流圈结构及动力学[J].中国地质, 2002, 29(3): 234-245. doi: 10.3969/j.issn.1000-3657.2002.03.002

    CAI Xuelin, ZHU Jieshou, CAO Jiamin, et al. Structure and dynamics of lithosphere and asthenosphere in the gigantic East Asian-West Pacific rift system[J]. Geology in China, 2002, 29(3): 234-245. doi: 10.3969/j.issn.1000-3657.2002.03.002

    [10]

    Shao L, Qiao P, Pang X, et al. Nd isotopic variations and its implications in the recent sediments from the northern South China Sea[J]. Science Bulletin, 2009, 54(2): 311-317. doi: 10.1007/s11434-008-0453-8

    [11]

    Kuang Z, Zhong G, Wang L, et al. Channel-related sediment waves on the eastern slope offshore Dongsha Islands, northern South China Sea[J]. Journal of Asian Earth Sciences, 2014, 79: 540-551. doi: 10.1016/j.jseaes.2012.09.025

    [12]

    Zhong G, Matthieu J B, Kang Z, et al. Cyclic steps along the South Taiwan Shoal and West Penghu submarine canyons on the northeastern continental slope of the South China Sea[J]. Geological Society of America Bulletin, 2015, 127(5-6): 804-824. doi: 10.1130/B31003.1

    [13]

    Gong C, Wang Y, Peng X, et al. Sediment waves on the South China Sea Slope off southwestern Taiwan: Implications for the intrusion of the Northern Pacific Deep Water into the South China Sea[J]. Marine and Petroleum Geology, 2012, 32(1): 95-109. doi: 10.1016/j.marpetgeo.2011.12.005

    [14]

    徐尚, 王英民, 彭学超, 等.台湾峡谷中段沉积特征及流体机制探讨[J].地质论评, 2013, 31(2): 325-330. doi: 10.3969/j.issn.0371-5736.2013.02.014

    XU Shang, WANG Yingmin, PENG Xuechao, et al. Depositional elements and settings of HD13 and HD77 cores in the Taiwan Canyon[J]. Acta Sedimentologica Sinica, 2013, 31(2):325-330. doi: 10.3969/j.issn.0371-5736.2013.02.014

    [15]

    Liu Z, Trentesaux A, Clemens S C, et al. Clay mineral assemblages in the northern South China Sea: implications for East Asian monsoon evolution over the past 2 million years[J]. Marine Geology, 2003, 201(1-3): 133-146. doi: 10.1016/S0025-3227(03)00213-5

    [16]

    Tamburini F, Adatte T, Föllmi K, et al. Investigating the history of East Asian monsoon and climate during the last glacial-interglacial period (0~140000 years): mineralogy and geochemistry of ODP Sites 1143 and 1144, South China Sea[J]. Marine Geology, 2003, 201(1): 147-168.

    [17]

    Wan S, Li A, Clift P D, et al. Development of the East Asian monsoon: Mineralogical and sedimentologic records in the northern South China Sea since 20 Ma[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(3-4): 561-582. doi: 10.1016/j.palaeo.2007.07.009

    [18]

    Clift P, Lee J I, Clark M K, et al. Erosional response of South China to arc rifting and monsoonal strengthening; a record from the South China Sea[J]. Marine Geology, 2002, 184(3): 207-226. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3bd879293e1dcfe29d32184d3ae6930e

    [19]

    Li X, Wei G, Shao L, et al. Geochemical and Nd isotopic variations in sediments of the South China Sea: a response to Cenozoic tectonism in SE Asia[J]. Earth and Planetary Science Letters, 2003, 211(3-4): 207-220. doi: 10.1016/S0012-821X(03)00229-2

    [20]

    Wan S, Li A, Clift P D, et al. Increased contribution of terrigenous supply from Taiwan to the northern South China Sea since 3Ma[J]. Marine Geology, 2010, 278(1-4): 115-121. doi: 10.1016/j.margeo.2010.09.008

    [21]

    Xu K, Milliman J D, Li A, et al. Yangtze- and Taiwan-derived sediments on the inner shelf of East China Sea[J]. Continental Shelf Research, 2009, 29(18): 2240-2256. doi: 10.1016/j.csr.2009.08.017

    [22]

    Boulay S, Colin C, Trentesaux A, et al. Sediment sources and East Asian monsoon intensity over the last 450 ky: Mineralogical and geochemical investigations on South China Sea sediments [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 228(3): 260-277.

    [23]

    Liu Z, Tuo S, Colin C, et al. Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation[J]. Marine Geology, 2008, 255(3-4): 149-155. doi: 10.1016/j.margeo.2008.08.003

    [24]

    Shao L, Li X, Wei G, et al. Provenance of a prominent sediment drift on the northern slope of the South China Sea[J]. Science in China (Series D), 2001, 10(44): 919-925. http://d.wanfangdata.com.cn/Periodical_zgkx-ed200110008.aspx

    [25]

    Wehausen R, Brumsack H. Astronomical forcing of the East Asian monsoon mirrored by the composition of Pliocene South China Sea sediments[J]. Earth and Planetary Science Letters, 2002, 201(3): 621-636. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=687bd0468fd21d647fb1dfcaaa50b248

    [26]

    丁巍伟, 李家彪, 李军.南海北部陆坡海底峡谷形成机制探讨[J].海洋学研究, 2010, 28(1): 96-105. http://d.old.wanfangdata.com.cn/Periodical/dhhy201001004

    DING Weiwei, LI Jiabiao, LI Jun, et al. Geomorphology, grain-size charicteristics, matter source and forming mechanism of sediment waves on the ocean bottom of the northeast South China Sea[J]. Journal of Marine Sciences, 2010, 28(1): 96-105. http://d.old.wanfangdata.com.cn/Periodical/dhhy201001004

    [27]

    Mac Manus J. Grain size determination and interpretation[J]. Techniques in Sedimentology, 1988: 63-85. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0227211167/

    [28]

    汪品先, 章纪军, 赵泉鸿, 等.东海底质中的有孔虫与介形虫[M].北京:海洋出版社, 1988.

    WANG Pinxian, ZHANG Jijun, ZHAO Quanhong, et al. Foraminifera and Ostracoda in the Sediments of East China Sea[M]. Beijing: Ocean Press, 1988.

    [29]

    汪品先, 闵秋宝, 卞云华.南黄海西北部底质中有孔虫、介形虫分布规律及其地质意义[C]//海洋微体古生物论文集.北京: 海洋出版社, 1980.

    WANGA Pinxian, MIN Qiubao, BIAN Yunhua. Papers on Marine Micropaleontology[C]. Beijing: Ocean Press, 1980.

    [30]

    郑守仪.东海的胶结和瓷质有孔虫[M].北京:科学出版社, 1986.

    ZHENG Shouyi. Cement and Porcellaneous Foraminifera in the East China Sea[M]. Beijing: Science Press, 1988.

    [31]

    Murray J. Ecology and Applications of Benthic Foraminifera[M]. Cambridge University Press, Cambridge, 2006.

    [32]

    袁迎如.冲绳海槽的浊流沉积物[J].地质论评, 1987, 33(6): 499-505. doi: 10.3321/j.issn:0371-5736.1987.06.001

    YUAN Yingru. Turbidites in the Okinawa Trough[J]. Geological Review, 1987, 33(6): 499-505. doi: 10.3321/j.issn:0371-5736.1987.06.001

    [33]

    Liu Z, Colin C, Huang W, et al. Climatic and tectonic controls on weathering in south China and Indochina Peninsula: Clay mineralogical and geochemical investigations from the Pearl, Red, and Mekong drainage basins[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(5):938-949.

    [34]

    Liu Z, Colin C, Li X, et al. Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: Source and transport[J]. Marine Geology, 2010, 277(1-4): 48-60. doi: 10.1016/j.margeo.2010.08.010

    [35]

    Liu J, Yan W, Chen Z, et al. Sediment sources and their contribution along northern coast of the South China Sea: Evidence from clay minerals of surface sediments[J]. Continental Shelf Research, 2012, 47: 156-164. doi: 10.1016/j.csr.2012.07.013

    [36]

    Liu Z, Zhao Y, Colin C, et al. Source-to-sink transport processes of fluvial sediments in the South China Sea[J]. Earth-Science Reviews, 2016, 153: 238-273. doi: 10.1016/j.earscirev.2015.08.005

    [37]

    Liu Z, Zhao Y, Colin C, et al. Chemical weathering in Luzon, Philippines from clay mineralogy and major-element geochemistry of river sediments[J]. Applied Geochemistry, 2009, 24(11): 2195-2205. doi: 10.1016/j.apgeochem.2009.09.025

  • 加载中

(6)

(3)

计量
  • 文章访问数:  2725
  • PDF下载数:  44
  • 施引文献:  0
出版历程
收稿日期:  2018-12-14
修回日期:  2019-03-19
刊出日期:  2019-08-28

目录