卡罗琳海板块实验:初始俯冲、初始扩张与流固耦合

李春峰, 李刚, 厉子龙, 刘文潇, 章露露, 陆哲哲, 陈雪刚, 姚泽伟. 卡罗琳海板块实验:初始俯冲、初始扩张与流固耦合[J]. 海洋地质与第四纪地质, 2019, 39(5): 87-97. doi: 10.16562/j.cnki.0256-1492.2019031501
引用本文: 李春峰, 李刚, 厉子龙, 刘文潇, 章露露, 陆哲哲, 陈雪刚, 姚泽伟. 卡罗琳海板块实验:初始俯冲、初始扩张与流固耦合[J]. 海洋地质与第四纪地质, 2019, 39(5): 87-97. doi: 10.16562/j.cnki.0256-1492.2019031501
LI Chunfeng, LI Gang, LI Zilong, LIU Wenxiao, ZHANG Lulu, LU Zhezhe, CHEN Xuegang, YAO Zewei. Study of the Caroline plate: Initial subduction, initial spreading and fluid-solid interaction[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 87-97. doi: 10.16562/j.cnki.0256-1492.2019031501
Citation: LI Chunfeng, LI Gang, LI Zilong, LIU Wenxiao, ZHANG Lulu, LU Zhezhe, CHEN Xuegang, YAO Zewei. Study of the Caroline plate: Initial subduction, initial spreading and fluid-solid interaction[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 87-97. doi: 10.16562/j.cnki.0256-1492.2019031501

卡罗琳海板块实验:初始俯冲、初始扩张与流固耦合

  • 基金项目: 国家自然科学基金重大研究计划重点项目“西太平洋地球系统多圈层相互作用”(91858213);国家自然科学基金面上项目“太平洋岩石圈热演化研究”(41776057)
详细信息
    作者简介: 李春峰(1970—),男,教授,主要从事应用地球物理与地球动力学研究,E-mail:cfli@zju.edu.cn
  • 中图分类号: P738.1

Study of the Caroline plate: Initial subduction, initial spreading and fluid-solid interaction

  • 西太平洋具有全球最活跃的板块构造与海陆相互作用过程,西太平洋的卡罗琳(Caroline)海盆形成于特提斯海与太平洋之间,处于印尼海道的咽喉区域,海盆范围正好对应了西太平洋暖池的大部分海域。其内部地形复杂,具有特征的隆起和残留洋中脊,而周围具有年轻活跃的俯冲带和洋中脊,并且与菲律宾海、太平洋、Ontong-Java大火成岩省、众多深海沟等相互作用,是研究俯冲带和洋中脊初始形成机理与动力学以及固体地球与海水相互作用的理想场所。过去对Caroline海盆的研究主要是美国和日本科学家在20世纪70—80年代完成的,在很多构造单元的成因和属性的解释上存在很大争议,很少涉及多圈层相互作用方面的研究。国家自然科学基金委重大研究计划“西太平洋地球系统多圈层相互作用”的实施推动了西太平洋基础海洋科学研究的步伐,通过综合地球物理和地球化学分析,对Caroline海盆的构造边界过程和海盆岩石圈蛇纹岩化程度等开展详细研究,探索深部过程与海底过程之间,特别是在水和热流通量方面的联系。Caroline海盆是提出典型海洋微板块演化模式和未来进一步深入研究(包括科学大洋钻探)的关键区域,其复杂多样的边界发育初始俯冲边界、初始扩张边界以及火山链和张裂中心,其板内地质构造也曾存在复杂的海底扩张和构造转换,并且显示强烈的板块边界和板内构造耦合过程。

  • 加载中
  • 图 1  Caroline海盆在西太平洋中的区域位置、区域水深地形图

    Figure 1. 

    图 2  Caroline海盆与邻域水深和构造单元图(a) 及Caroline海盆与邻域三维立体地形图(b)

    Figure 2. 

    图 3  研究技术路线图

    Figure 3. 

    表 1  Caroline海盆研究现状

    Table 1.  Current research status in the Caroline Basin

    研究者研究范围研究数据初步结论
    Weissel and Anderson, 1978[2]Caroline 海盆地震数据等存在独立 Caroline 海板块
    Gaina and Müller, 2007[3];Bracey, 1975[4];MacLeod et al., 2017[5]Caroline 海盆磁异常海盆扩张历史复杂,可能存在扩张中断、
    洋脊跃迁、重新活动
    Li and Wang, 2016[6]Caroline 海脊和
    Eauripik 海岭
    重磁、热流数据等两者地球物理场和深部结构差异大,不可能同源
    Erlandson et al., 1976[7];Weissel and
    Anderson, 1978[2];Hegarty et al., 1983[8]
    Mussau 俯冲海沟重力、水深数据等Mussau 海沟是初始俯冲的产物,
    俯冲程度由北向南加大
    Weissel and Anderson, 1978[2];Fujiwara et al., 1995[9];Fujiwara et al., 2000[10];Lee, 2004[11]Ayu 海盆水深数据等洋中脊年龄、海底扩张动力学机制未明
    Weissel and Anderson, 1978[2];Bracey, 1983[12]
    Li and Wang, 2016[8]
    Caroline 海脊及
    Sorol 海槽
    岩石地球化学、重磁、
    热流、水深数据等
    Sorol 海槽为斜向张裂转换系统;
    Caroline 海脊大陆边缘张裂演化模式
    Ryan, 1988[13];Tregoning and Gorbatov, 2004[14]新几内亚俯冲带地震层析成像活跃俯冲带,~9 Ma 以来 ~650 km 板片俯冲
    下载: 导出CSV
  • [1]

    宋晓晓, 李春峰. 西太平洋科学大洋钻探的地球动力学成果[J]. 热带海洋学报, 2016, 35(1):17-30 doi: 10.11978/2014121

    SONG Xiaoxiao, LI Chunfeng. Geodynamic results of scientific ocean drilling in the western Pacific [J]. Journal of Tropical Oceanography, 2016, 35(1): 17-30. doi: 10.11978/2014121

    [2]

    Weissel J K, Anderson R N. Is there a Caroline plate? [J]. Earth and Planetary Science Letters, 1978, 41(2): 143-158. doi: 10.1016/0012-821X(78)90004-3

    [3]

    Gaina C, Müller D. Cenozoic tectonic and depth/age evolution of the Indonesian gateway and associated back-arc basins [J]. Earth-Science Reviews, 2007, 83(3-4): 177-203. doi: 10.1016/j.earscirev.2007.04.004

    [4]

    Bracey D R. Reconnaissance geophysical survey of the Caroline Basin [J]. Geological Society of America Bulletin, 1975, 86(6): 775-784. doi: 10.1130/0016-7606(1975)86<775:RGSOTC>2.0.CO;2

    [5]

    MacLeod S J, Williams S E, Matthews K J, et al. A global review and digital database of large-scale extinct spreading centers [J]. Geosphere, 2017, 13(3): 911-949. doi: 10.1130/GES01379.1

    [6]

    Li C F, Wang J. Variations in Moho and curie depths and heat flow in Eastern and Southeastern Asia [J]. Marine Geophysical Research, 2016, 37(1): 1-20. doi: 10.1007/s11001-016-9265-4

    [7]

    Erlandson D L, Orwig T L, Kiilsgaard G, et al. Tectonic interpretations of the East Caroline and Lyra basins from reflection-profiling investigations [J]. Geological Society of America Bulletin, 1976, 87(3): 453-462. doi: 10.1130/0016-7606(1976)87<453:TIOTEC>2.0.CO;2

    [8]

    Fujiwara T, Tamaki K, Fujimoto H, et al. Morphological studies of the Ayu trough, Philippine sea–Caroline plate boundary [J]. Geophysical Research Letters, 1995, 22(2): 109-112. doi: 10.1029/94GL02719

    [9]

    Fujiwara T, Tamura C, Nishizawa A, et al. Morphology and tectonics of the Yap Trench [J]. Marine Geophysical Researches, 2000, 21(1-2): 69-86.

    [10]

    Lee S M. Deformation from the convergence of oceanic lithosphere into Yap trench and its implications for early-stage subduction [J]. Journal of Geodynamics, 2004, 37(1): 83-102. doi: 10.1016/j.jog.2003.10.003

    [11]

    Bracey D R. Geophysics and tectonic development of the Caroline basin[R]. Bay St. Louis, MS: Naval Oceanographic Office, 1983.

    [12]

    Ryan H F, Marlow M S. Multichannel seismic-reflection data collected at the intersection of the Mussau and Manus trenches, Papua New Guinea[M]//Marlow M S, Dadisman S V, Exon N F. Geology and Offshore Resources of Pacific Island Arc: New Ireland and Manus Region, Papua New Guinea. Houston: Circum-Pacific Council for Energy, 1988: 203-210.

    [13]

    Tregoning P, Gorbatov A. Evidence for active subduction at the New Guinea Trench [J]. Geophysical Research Letters, 2004, 31(13): L13608.

    [14]

    Harrison C G A. Magnetization of the oceanic crust [J]. Geophysical Journal International, 1976, 47(2): 257-283. doi: 10.1111/j.1365-246X.1976.tb01273.x

    [15]

    Den N, Ludwig W J, Murauchi S, et al. Sediments and structure of the Eauripik‐New Guinea rise [J]. Journal of Geophysical Research, 1971, 76(20): 4711-4723. doi: 10.1029/JB076i020p04711

    [16]

    Mammerickx J. Re-evaluation of some geophysical observations in the Caroline Basins [J]. Geological Society of America Bulletin, 1978, 89(2): 192-196. doi: 10.1130/0016-7606(1978)89<192:ROSGOI>2.0.CO;2

    [17]

    Hegarty K A, Weissel J K, Hayes D E. Convergence at the Caroline‐Pacific plate boundary: collision and subduction[M]//Hayes D E. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2. Washington, DC: American Geophysical Union., 1983: 326-348.

    [18]

    Altis S. Origin and tectonic evolution of the Caroline Ridge and the Sorol Trough, western tropical Pacific, from admittance and a tectonic modeling analysis [J]. Tectonophysics, 1999, 313(3): 271-292. doi: 10.1016/S0040-1951(99)00204-8

    [19]

    Bracey D R, Andrews J E. Western Caroline ridge: relic island arc? [J]. Marine Geophysical Researches, 1974, 2(2): 111-125.

    [20]

    Perfit M R, Fornari D J. Mineralogy and geochemistry of volcanic and plutonic rocks from the boundaries of the Caroline plate: tectonic implications [J]. Tectonophysics, 1982, 87(1-4): 279-313. doi: 10.1016/0040-1951(82)90230-X

    [21]

    Keating B H, Mattey D P, Helsley C E, et al. Evidence for a hot spot origin of the Caroline Islands [J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B12): 9937-9948. doi: 10.1029/JB089iB12p09937

    [22]

    Li C F, Wang J. Thermal structures of the Pacific lithosphere from magnetic anomaly inversion [J]. Earth and Planetary Physics, 2018, 2(1): 52-66.

    [23]

    Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations [J]. Journal of Asian Earth Sciences, 2002, 20(4): 353-431. doi: 10.1016/S1367-9120(01)00069-4

    [24]

    Stern R J. Subduction initiation: spontaneous and Induced [J]. Earth and Planetary Science Letters, 2004, 226(3-4): 275-292. doi: 10.1016/S0012-821X(04)00498-4

    [25]

    Deschamps A E, Lallemand S E, Collot J Y. A detailed study of the Gagua ridge: a fracture zone uplifted during a plate reorganisation in the Mid-Eocene [J]. Marine Geophysical Research, 1998, 20(5): 403-423. doi: 10.1023/A:1004650323183

    [26]

    Li C F, Zhou Z Y, Li J B, et al. Precollisional tectonics and terrain amalgamation offshore southern Taiwan: characterizations from reflection seismic and potential field data [J]. Science in China Series D: Earth Sciences, 2007, 50(6): 897-908. doi: 10.1007/s11430-007-0025-9

    [27]

    Arculus R J, Ishizuka O, Bogus K, et al. Expedition 351 scientists[C]//Proceedings of the International Ocean Discovery Program, Expedition 351: Izu-Bonin-Mariana Arc Origins. College Station, TX: International Ocean Discovery Program, 2015.

    [28]

    Reagan M K, Pearce J A, Petronotis K, et al. Izu-Bonin-Mariana fore arc[C]//Proceedings of the International Ocean Discovery Program, 352. College Station, TX: International Ocean Discovery Program, 2015.

    [29]

    Tamura Y, Busby C J, Blum P, et al. Izu-Bonin-Mariana rear arc[C]//Proceedings of the International Ocean Discovery Program, Expedition 350: Izu-Bonin-Mariana Rear Arc. College Station, TX: International Ocean Discovery Program, 2015.

    [30]

    Keenan T E, Encarnación J. Unclear causes for subduction [J]. Nature Geoscience, 2016, 9(5): 388.

    [31]

    Li C F. An integrated geodynamic model of the Nankai subduction zone and neighboring regions from geophysical inversion and modeling [J]. Journal of Geodynamics, 2011, 51(1): 64-80. doi: 10.1016/j.jog.2010.08.003

    [32]

    Li C F, Wang J, Lin J, et al. Thermal evolution of the North Atlantic lithosphere: new constraints from magnetic anomaly inversion with a fractal magnetization model [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(12): 5078-5105. doi: 10.1002/2013GC004896

    [33]

    Li C F, Lu Y, Wang J. A global reference model of Curie-point depths based on EMAG2 [J]. Scientific Reports, 2017, 7: 45129. doi: 10.1038/srep45129

    [34]

    Shi X B, Kirby J, Yu C H, et al. Spatial variations in the effective elastic thickness of the lithosphere in Southeast Asia [J]. Gondwana Research, 2017, 42: 49-62. doi: 10.1016/j.gr.2016.10.005

    [35]

    Bai Y L, Dong D D, Kirby J F, et al. The effect of dynamic topography and gravity on lithospheric effective elastic thickness estimation: a case study [J]. Geophysical Journal International, 2018, 214(1): 623-634. doi: 10.1093/gji/ggy162

    [36]

    付永涛, 李安春, 秦蕴珊. 大洋和大陆边缘岩石圈有效弹性厚度的研究意义[J]. 海洋地质与第四纪地质, 2002, 22(3):69-75

    FU Yongtao, LI Anchun, QIN Yunshan. Effective elastic thickness of the oceanic and continental marginal lithospheres [J]. Marine Geology & Quaternary Geology, 2002, 22(3): 69-75.

    [37]

    杨安, 付永涛, 李安春. 卡罗琳板块及其附近地区的岩石圈有效弹性厚度[J]. 地球物理学报, 2016, 59(9):3280-3290 doi: 10.6038/cjg20160913

    YANG An, FU Yongtao, LI Anchun. The effective elastic thickness of the Caroline plate and its adjacent areas [J]. Chinese Journal of Geophysics, 2016, 59(9): 3280-3290. doi: 10.6038/cjg20160913

    [38]

    赵俐红, 金翔龙, 高金耀, 等. 中西太平洋海山区的岩石圈有效弹性厚度及其地质意义[J]. 地球科学-中国地质大学学报, 2010, 35(4):637-644

    ZHAO Lihong, JIN Xianglong, GAO Jinyao, et al. The effective elastic thickness of lithosphere in the mid-west pacific and its geological significance [J]. Earth Science-Journal of China University of Geosciences, 2010, 35(4): 637-644.

    [39]

    Jackson M G, Price A A, Blichert-Toft J, et al. Geochemistry of lavas from the Caroline hotspot, Micronesia: Evidence for primitive and recycled components in the mantle sources of lavas with moderately elevated 3He/4He [J]. Chemical Geology, 2017, 455: 385-400. doi: 10.1016/j.chemgeo.2016.10.038

    [40]

    Chave A D, Jones A G. The Magnetotelluric Method: Theory and Practice[M]. New York: Cambridge University Press, 2012.

    [41]

    Constable S C. Marine electromagnetic induction studies [J]. Surveys in Geophysics, 1990, 11(2-3): 303-327. doi: 10.1007/BF01901663

    [42]

    Zhdanov M S. Electromagnetic geophysics: notes from the past and the road ahead [J]. Geophysics, 2010, 75(5): 75A49-75A66. doi: 10.1190/1.3483901

    [43]

    Baba K. Electrical structure in marine tectonic settings [J]. Surveys in Geophysics, 2005, 26(6): 701-731. doi: 10.1007/s10712-005-1831-2

    [44]

    Key K. Marine electromagnetic studies of seafloor resources and tectonics [J]. Surveys in Geophysics, 2012, 33(1): 135-167. doi: 10.1007/s10712-011-9139-x

    [45]

    Baba K, Tarits P, Chave A D, et al. Electrical structure beneath the northern MELT line on the East Pacific Rise at 15°45’S [J]. Geophysical Research Letters, 2006, 33(22): L22301. doi: 10.1029/2006GL027528

    [46]

    Evans R L, Tarits P, Chave A D, et al. Asymmetric electrical structure in the mantle beneath the East Pacific Rise at 17°S [J]. Science, 1999, 286(5440): 752-756. doi: 10.1126/science.286.5440.752

    [47]

    Heinson G, White A, Lilley F E M. Rifting of a passive margin and development of a lower-crustal detachment zone: evidence from marine magnetotellurics [J]. Geophysical Research Letters, 2005, 32(12): L12305.

    [48]

    Jegen M, Avdeeva A, Berndt C, et al. 3-D magnetotelluric image of offshore magmatism at the Walvis Ridge and rift basin [J]. Tectonophysics, 2016, 683: 98-108. doi: 10.1016/j.tecto.2016.06.016

    [49]

    Evan R L, Chave A D, Booker J R. On the importance of offshore data for magnetotelluric studies of ocean-continent subduction systems [J]. Geophysical Research Letters, 2002, 29(9): 16-1-16-4.

    [50]

    Ichiki M, Baba K, Toh H, et al. An overview of electrical conductivity structures of the crust and upper mantle beneath the northwestern Pacific, the Japanese Islands, and continental East Asia [J]. Gondwana Research, 2009, 16(3-4): 545-562. doi: 10.1016/j.gr.2009.04.007

    [51]

    Toh H, Baba K, Ichiki M, et al. Two-dimensional electrical section beneath the eastern margin of Japan Sea [J]. Geophysical Research Letters, 2006, 33(22): L22309. doi: 10.1029/2006GL027435

    [52]

    Worzewski T, Jegen M, Kopp H, et al. Magnetotelluric image of the fluid cycle in the Costa Rican subduction zone [J]. Nature Geoscience, 2011, 4(2): 108-111. doi: 10.1038/ngeo1041

    [53]

    Matsuno T, Seama N, Evans R L, et al. Upper mantle electrical resistivity structure beneath the central Mariana subduction system [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(9): Q09003.

    [54]

    Mattey D P. The minor and trace element geochemistry of volcanic rocks from Truk, Ponape and Kusaie, Eastern Caroline Islands; the evolution of a young hot spot trace across old pacific ocean crust [J]. Contributions to Mineralogy and Petrology, 1982, 80(1): 1-13. doi: 10.1007/BF00376730

    [55]

    Lee S M, Kim S S. Vector magnetic analysis within the southern Ayu Trough, equatorial western Pacific [J]. Geophysical Journal International, 2004, 156(2): 213-221. doi: 10.1111/j.1365-246X.2003.02125.x

    [56]

    Allègre C J. Isotope Geology[M]. New York: Cambridge University Press, 2008: 512.

    [57]

    Andreani M, Daniel I, Pollet-villard M. Aluminum speeds up the hydrothermal alteration of olivine [J]. American Mineralogist, 2015, 98(10): 1738-1744.

    [58]

    Berndt M E, Allen D E, Seyfried W E Jr. Reduction of CO2 during serpentinization of olivine at 300°C and 500 bar [J]. Geology, 1996, 24(4): 351-354. doi: 10.1130/0091-7613(1996)024<0351:ROCDSO>2.3.CO;2

    [59]

    McCollom T M. Abiotic methane formation during experimental serpentinization of olivine [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(49): 13965-13970. doi: 10.1073/pnas.1611843113

    [60]

    McCollom T M, Klein F, Robbins M, et al. Temperature trends for reaction rates, hydrogen generation, and partitioning of iron during experimental serpentinization of olivine [J]. Geochimica et Cosmochimica Acta, 2016, 181: 175-200. doi: 10.1016/j.gca.2016.03.002

    [61]

    Huang R, Song M S, Ding X, et al. Influence of pyroxene and spinel on the kinetics of peridotite serpentinization [J]. Journal of Geophysical Research: Solid Earth, 2017, 122(9): 7111-7126. doi: 10.1002/2017JB014231

    [62]

    Rollinson H R. Using Geochemical Data: Evaluation, Presentation, Interpretation[M]. New York: Longman Scientific and Technical, 1993: 352.

    [63]

    Ellam R M. Lithospheric thickness as a control on basalt geochemistry [J]. Geology, 1992, 20(2): 153-156. doi: 10.1130/0091-7613(1992)020<0153:LTAACO>2.3.CO;2

    [64]

    Gibson S A, Thompson R N, Dickin A P, et al. High-Ti and low-Ti mafic potassic magmas: key to plume–lithosphere interactions and continental flood-basalt genesis [J]. Earth and Planetary Science Letters, 1995, 136(3-4): 149-165. doi: 10.1016/0012-821X(95)00179-G

    [65]

    Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites [J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147. doi: 10.1016/S0016-7037(99)00343-9

    [66]

    Porter K A, White W M. Deep mantle subduction flux [J]. Geochemistry, Geophysics, Geosystems, 2009, 10(12): Q12016.

    [67]

    Sobolev A V, Hofmann A W, Jochum K P, et al. A young source for the Hawaiian plume [J]. Nature, 2011, 476(7361): 434-437. doi: 10.1038/nature10321

    [68]

    Herzberg C, Asimow P D, Arndt N, et al. Temperatures in ambient mantle and plumes: constraints from basalts, picrites, and komatiites [J]. Geochemistry, Geophysics, Geosystems, 2007, 8(2): Q02006.

    [69]

    Herzberg C, Asimow P D. Petrology of some oceanic island basalts: PRIMELT2. XLS software for primary magma calculation [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(9): Q09001.

    [70]

    Pearce J A, Cann J R. Tectonic setting of basic volcanic rocks determined using trace element analyses [J]. Earth and Planetary Science Letters, 1973, 19(2): 290-300. doi: 10.1016/0012-821X(73)90129-5

    [71]

    Weaver B L. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints [J]. Earth and Planetary Science Letters, 1991, 104(2-4): 381-397. doi: 10.1016/0012-821X(91)90217-6

    [72]

    Klein E M, Langmuir C H. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness [J]. Journal of Geophysical Research: Solid Earth, 1987, 92(B8): 8089-8115. doi: 10.1029/JB092iB08p08089

    [73]

    Winterer E L, Riedel W R. Initial reports of the deep sea drilling project[R]. Washington, DC: U.S. Government Printing Office, 1971.

    [74]

    Rosenthal Y, Holbourn A E, Kulhanek D K, et al. Western pacific warm pool[C]//Proceedings of the International Ocean Discovery Program. College Station, TX: International Ocean Discovery Program, 2018, 363.

  • 加载中

(3)

(1)

计量
  • 文章访问数:  6457
  • PDF下载数:  293
  • 施引文献:  0
出版历程
收稿日期:  2019-03-15
修回日期:  2019-04-01
刊出日期:  2019-10-25

目录