Trace elements in non-marine Ostracods and their application to paleoenvironment reconstruction
-
摘要:
湖相介形类壳体微量元素(本文主要指Mg和Sr)是重建古环境的重要指标之一,可以定性或定量地反映湖水信息。自20世纪80年开始应用以来,经过30余年的发展取得了很大进展。在古环境重建过程中主要存在两类影响因素:(1)其宿生水体中M/Ca比值(M主要指Mg和Sr)的影响因素:季节变化、微环境差异和湖泊演化过程,这类因素通过对宿生水体中M/Ca比值来影响介形虫壳体中的M/Ca比值,进而造成古环境重建结果的误差增大或可靠性降低;(2)介形类壳体微量元素分配系数的影响因素:宿生水体中M/Ca比值、温度、碱度等,这类因素能够直接影响介形类壳体分泌、钙化的生命-化学过程的因素,是定量重建的重要影响因素。加强现代介形类生活习性和微量元素组成变化过程的研究可以消除或减小以上影响因素对古环境重建的影响,提高介形类壳体化石中微量元素组成在古环境重建研究中的精度和可靠性。
Abstract:The trace elements (Mg and Sr in this paper) in non-marine Ostracoda could be used as proxies to reconstruct the paleoenvironment of paleo-lake qualitatively or quantitatively. Since their first application to paleoenvironmental reconstruction in the 1980s, great progress has been made in the past 30 years. There are two factors which influence the proxies. One is the changes in M/Ca ratio of the host water (M refers to Mg plus Sr in this paper), including seasonal changes, microenvironmental differentiation and lake evolution process. This type of factors affects the M/Ca ratio in Ostracoda shells through the changes in M/Ca ratio in the host water,and may lead to the increase in error or decrease in reliability of the reconstruction results. The other is the partition coefficient of Ostracoda shells, including M/Ca of host water, temperature, alkalinity and so on, which can directly affect the bio-chemical process of shell secretion and calcification. This type of influencing factors may severely influence the quantitative reconstruction of paleoenvironment. For improving the accuracy and reliability of the results of paleoenvironmental reconstruction, living habits of modern Ostracoda and their trace elements composition in different environments should be carefully studied as reference cases.
-
Key words:
- ostracoda /
- trace elements in shell /
- quantitative reconstruction /
- partition coefficient
-
图 1 介形类壳体微量元素比值(中心介形类为意外湖花介左壳;据文献[8]修改)
Figure 1.
图 2 湖泊水体中离子浓度和比值与盐度关系(据文献[41]修改)
Figure 2.
图 3 介形类壳体Mg/Ca比值、Kd [Mg]与湖水Mg/Ca比值关系(a据文献[37]修改;b和c据文献[46]修改)
Figure 3.
图 4 介形类壳体Sr/Ca与温度的关系(据文献[9]修改)
Figure 4.
-
[1] 郝诒纯, 茅绍智. 微体古生物学教程[M]. 2版. 武汉: 中国地质大学出版社, 1993: 44-67.
HAO Yichun, MAO Shaozhi. A Course in Micropalaeontology[M]. 2md ed. Wuhan: China University of Geosciences Press, 1993: 44-67.
[2] 禹娜. 中国非海水介形类[M]. 上海: 上海教育出版社, 2014: 1-25.
YU Na. Non-marine Ostracoda from China[M]. Shanghai: Shanghai Education Publishing House, 2014: 1-25.
[3] Meisch C. Freshwater Ostracoda of western and Central Europe[M]//Schwoerbel J, Zwick P. Süßwasserfauna von Mitteleuropa 8/3. Heidelberg, Berlin, 2000: 522.
[4] Zhai D Y, Xiao J L, Fan J W, et al. Spatial heterogeneity of the population age structure of the ostracode Limnocythere inopinata in Hulun Lake, Inner Mongolia and its implications [J]. Hydrobiologia, 2013, 716(1): 29-46. doi: 10.1007/s10750-013-1541-6
[5] Turpen J B, Angell R W. Aspects of molting and calcification in the ostracod Heterocypris [J]. Biological Bulletin, 1971, 140(2): 331-338. doi: 10.2307/1540077
[6] Roca J R, Wansard G. Temperature influence on development and calcification of Herpetocypris brevicaudata Kaufmann, 1900(Crustacea: Ostracoda) under experimental conditions [J]. Hydrobiologia, 1997, 347(1-3): 91-95.
[7] De Deckker P, Chivas A R, Shelley J M G. Uptake of Mg and Sr in the euryhaline ostracod Cyprideis determined from in vitro experiments [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 148(1-3): 105-116. doi: 10.1016/S0031-0182(98)00178-3
[8] Holmes J A, De Deckker P. Chapter 8-The chemical composition of ostracod shells: Applications in quaternary palaeoclimatology [J]. Developments in Quaternary Sciences, 2012, 17: 131-143. doi: 10.1016/B978-0-444-53636-5.00008-1
[9] Dettman D L, Dwyer G S. Chapter 9- The calibration of environmental controls on elemental ratios in ostracod shell calcite: A critical assessment [J]. Developments in Quaternary Sciences, 2012, 17: 145-163. doi: 10.1016/B978-0-444-53636-5.00009-3
[10] Börner N, De Baere B, Yang Q C, et al. Ostracod shell chemistry as proxy for paleoenvironmental change [J]. Quaternary International, 2013, 313-314: 17-37. doi: 10.1016/j.quaint.2013.09.041
[11] 沈吉, 王苏民, Matsumoto R, 等. 内蒙古岱海古盐度定量复原初探[J]. 科学通报, 2000, 45(17):1885-1889 doi: 10.3321/j.issn:0023-074X.2000.17.017
SHEN Ji, WANG Sumin, Matsumoto R, et al. A preliminary study on palaeosalinity recovery in Daihai, Inner Mongolia [J]. Chinese Science Bulletin, 2000, 45(17): 1885-1889. doi: 10.3321/j.issn:0023-074X.2000.17.017
[12] 张恩楼, 沈吉, 王苏民, 等. 近0.9 ka来青海湖湖水盐度的定量恢复[J]. 科学通报, 2004, 49(7):730-734 doi: 10.1007/BF03184273
ZHANG Enlou, SHEN Ji, WANG Sumin, et al. Quantitative reconstruction of the paleosalinity at Qinghai Lake in the past 900 years [J]. Chinese Science Bulletin, 2004, 49(7): 730-734. doi: 10.1007/BF03184273
[13] 杨红梅. 青藏高原通天河盆地五道梁组介形虫壳体Mg/Ca和Sr/Ca地球化学特征及古环境意义[J]. 成都理工大学学报: 自然科学版, 2009, 36(3):311-319
YANG Hongmei. The Palaeolimnological record from Northern Tibet based on trace element chemistry of ostracod shells and the paleoenvironment implication in Tongtianhe basin, Tibet, China [J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2009, 36(3): 311-319.
[14] Kober B, Schwalb A, Schettler G, et al. Constraints on paleowater dissolved loads and on catchment weathering over the past 16 ka from 87Sr/86Sr ratios and Ca/Mg/Sr chemistry of freshwater ostracode tests in sediments of Lake Constance, Central Europe [J]. Chemical Geology, 2007, 240(3-4): 361-376. doi: 10.1016/j.chemgeo.2007.03.005
[15] Zhai D Y, Xiao J L, Zhou L, et al. Holocene East Asian monsoon variation inferred from species assemblage and shell chemistry of the ostracodes from Hulun Lake, Inner Mongolia [J]. Quaternary Research, 2011, 75(3): 512-522. doi: 10.1016/j.yqres.2011.02.008
[16] Holmes J A. Trace-element and stable-isotope geochemistry of non-marine ostracod shells in Quaternary palaeoenvironmental reconstruction [J]. Journal of Paleolimnology, 1996, 15(3): 223-235. doi: 10.1007/BF00213042
[17] Curry B, Henne P D, Mezquita-Joanes F, et al. Holocene paleoclimate inferred from salinity histories of adjacent lakes in southwestern Sicily (Italy) [J]. Quaternary Science Reviews, 2016, 150: 67-83. doi: 10.1016/j.quascirev.2016.08.013
[18] Lev L, Stein M, Ito E, et al. Sedimentary, geochemical and hydrological history of Lake Kinneret during the past 28 000 years [J]. Quaternary Science Reviews, 2019, 209: 114-128. doi: 10.1016/j.quascirev.2019.02.015
[19] Jin Z D, Bickle M J, Chapman H J, et al. Ostracod Mg/Sr/Ca and 87Sr/86Sr geochemistry from Tibetan lake sediments: Implications for early to mid-Pleistocene Indian monsoon and catchment weathering [J]. Boreas, 2011, 40(2): 320-331. doi: 10.1111/j.1502-3885.2010.00184.x
[20] Chivas A R, De Deckker P, Shelly J M G. Magnesium, Strontium and barium partitioning in nonmarine ostracode shells and their use in paleoenvironmental reconstructions - a preliminary study[M]//Maddocks R F. Applications of Ostracoda. Houston: University Houston Geosciences, 1983: 238-249.
[21] Chivas A R, De Dekker P, Shelley J M G. Strontium content of ostracods indicates lacustrine palaeosalinity [J]. Nature, 1985, 316(6025): 251-253. doi: 10.1038/316251a0
[22] Chivas A R, De Deckker P, Shelley J M G. Magnesium and strontium in non-marine ostracod shells as indicators of palaeosalinity and palaeotemperature [J]. Hydrobiologia, 1986, 143(1): 135-142. doi: 10.1007/BF00026656
[23] Chivas A R, De Deckker P, Shelley J M G. Magnesium content of non-marine ostracod shells: A new palaeosalinometer and palaeothermometer [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1986, 54(1-4): 43-61. doi: 10.1016/0031-0182(86)90117-3
[24] De Deckker P, Chivas A R, Shelley J M G, et al. Ostracod shell chemistry: A new palaeoenvironmental indicator applied to a regressive/transgressive record from the gulf of Carpentaria, Australia [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1988, 66(3-4): 231-241. doi: 10.1016/0031-0182(88)90201-5
[25] Engstrom D R, Nelson S R. Paleosalinity from trace metals in fossil ostracodes compared with observational records at Devils Lake, North Dakota, USA [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1991, 83(4): 295-312. doi: 10.1016/0031-0182(91)90057-X
[26] Xia J, Ito E, Engstrom D R. Geochemistry of ostracode calcite: Part 1. An experimental determination of oxygen isotope fractionation [J]. Geochimica Et Cosmochimica Acta, 1997, 61(2): 377-382. doi: 10.1016/S0016-7037(96)00351-1
[27] Palacios-Fest M R, Dettman D L. Temperature controls monthly variation in Ostracode valve Mg/Ca: Cypridopsis vidua from a small lake in Sonora, Mexico [J]. Geochimica et Cosmochimica Acta, 2001, 65(15): 2499-2507. doi: 10.1016/S0016-7037(01)00602-0
[28] 夏娟娟. 湖相介形虫壳的稳定同位素和微量元素在古气候研究中的应用[J]. 第四纪研究, 1997, 16(4):345-352
XIA Juanjuan. Sable-isotope and trace-element composition on ostracode shells and their application to paleoclimatic reconstruction [J]. Quaternary Sciences, 1997, 16(4): 345-352.
[29] Wansard G. Quantification of paleotemperature changes during isotopic stage 2 in the La Draga continental sequence (NE Spain) based on the Mg/Ca ratio of freshwater ostracods [J]. Quaternary Science Reviews, 1996, 15(2-3): 237-245. doi: 10.1016/0277-3791(95)00044-5
[30] Dwyer G S, Cronin T M, Baker P A, et al. North Atlantic deepwater temperature change during Late Pliocene and Late Quaternary climatic cycles [J]. Science, 1995, 270(5240): 1347-1351. doi: 10.1126/science.270.5240.1347
[31] Cronin T M, Dwyer G S, Baker P A, et al. Orbital and suborbital variability in North Atlantic bottom water temperature obtained from deep-sea ostracod Mg/Ca ratios [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 162(1-2): 45-57. doi: 10.1016/S0031-0182(00)00104-8
[32] Holmes J A, Street-Perrott F A, Ivanovich M, et al. A late Quaternary palaeolimnological record from Jamaica based on trace-element chemistry of ostracod shells [J]. Chemical Geology, 1995, 124(1-2): 143-160. doi: 10.1016/0009-2541(95)00032-H
[33] De Deckker P, Magee J W, Shelley J M G. Late Quaternary palaeohydrological changes in the large playa Lake Frome in central Australia, recorded from the Mg/Ca and Sr/Ca in ostracod valves and biotic remains [J]. Journal of Arid Environments, 2011, 75(1): 38-50. doi: 10.1016/j.jaridenv.2010.08.004
[34] Mischke S, Wünnemann B. The Holocene salinity history of Bosten Lake (Xinjiang, China) inferred from ostracod species assemblages and shell chemistry: Possible palaeoclimatic implications [J]. Quaternary International, 2006, 154-155: 100-112. doi: 10.1016/j.quaint.2006.02.014
[35] 胡广, 金章东, 张飞. 利用介形类壳体Sr, Mg重建古环境受自生碳酸盐矿物的限制及机理探讨[J]. 中国科学: 地球科学, 2008, 51(5):654-664 doi: 10.1007/s11430-008-0043-2
HU Guang, JIN Zhangdong, ZHANG Fei. Constraints of authigenic carbonates on trace elements (Sr, Mg) of lacustrine ostracod shells in paleoenvironment reconstruction and its mechanism [J]. Science in China Series D: Earth Science, 2008, 51(5): 654-664. doi: 10.1007/s11430-008-0043-2
[36] Zhang J W, Holmes J A, Chen F H, et al. An 850-year ostracod-shell trace-element record from Sugan Lake, northern Tibetan Plateau, China: Implications for interpreting the shell chemistry in high-Mg/Ca waters [J]. Quaternary International, 2009, 194(1-2): 119-133. doi: 10.1016/j.quaint.2008.05.003
[37] Xia J, Engstrom D R, Ito E. Geochemistry of ostracode calcite: Part 2. The effects of water chemistry and seasonal temperature variation on Candona rawsoni [J]. Geochimica Et Cosmochimica Acta, 1997, 61(2): 383-391. doi: 10.1016/S0016-7037(96)00354-7
[38] Wansard G, Mezquita F. The response of ostracod shell chemistry to seasonal change in a Mediterranean freshwater spring environment [J]. Journal of Paleolimnology, 2001, 25(1): 9-16. doi: 10.1023/A:1008121029324
[39] De Deckker P. Trace elemental distribution in ostracod valves. From solution ICPMS and laser ablation ICPMS to microprobe mapping: a tribute to Rick Forester [J]. Hydrobiologia, 2017, 786(1): 23-39. doi: 10.1007/s10750-015-2534-4
[40] Yang Q C, Jochum K P, Stoll B, et al. Trace element variability in single ostracod valves as a proxy for hydrochemical change in Nam Co, central Tibet, during the Holocene [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 399: 225-235. doi: 10.1016/j.palaeo.2014.01.014
[41] Ito E, Forester R M. Changes in continental ostracode shell chemistry; uncertainty of cause [J]. Hydrobiologia, 2009, 620(1): 1-15. doi: 10.1007/s10750-008-9622-7
[42] Van der Meeren T, Ito E, Verschuren D, et al. Valve chemistry of Limnocythere inopinata (Ostracoda) in a cold arid environment - Implications for paleolimnological interpretation [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 306(3-4): 116-126. doi: 10.1016/j.palaeo.2011.04.006
[43] Eugster H P, Jones B F. Behavior of major solutes during closed-basin brine evolution [J]. American Journal of Science, 1979, 279(6): 609-631. doi: 10.2475/ajs.279.6.609
[44] 李军, 余俊清. 湖相介形类壳体地球化学在环境变化研究中的应用与进展[J]. 湖泊科学, 2001, 13(4):367-375 doi: 10.3321/j.issn:1003-5427.2001.04.012
LI Jun, YU Junqing. Lacustrine ostracodes as environmental change indicators: application and advance [J]. Journal of Lake Sciences, 2001, 13(4): 367-375. doi: 10.3321/j.issn:1003-5427.2001.04.012
[45] Gouramanis C, De Deckker P. Alkalinity control on the partition coefficients in lacustrine ostracodes from Australia [J]. Geology, 2010, 38(4): 359-362. doi: 10.1130/G30235.1
[46] Wansard G, De Deckker P, Julià R. Variability in ostracod partition coefficients D(Sr) and D(Mg): Implications for lacustrine palaeoenvironmental reconstructions [J]. Chemical Geology, 1998, 146(1-2): 39-54. doi: 10.1016/S0009-2541(97)00165-4
[47] Decrouy L, Vennemann T W, Ariztegui D. Mg/Ca and Sr/Ca of ostracod valves from living species of Lake Geneva [J]. Chemical Geology, 2012, 314-317: 45-56. doi: 10.1016/j.chemgeo.2012.04.007
[48] 赵泉鸿, 戴中宁, 任炽刚, 等. 活介形虫壳体中Mg/Ca比值与温度和盐度关系的试验[J]. 科学通报, 1994, 39(15):1409-1412 doi: 10.1360/csb1994-39-15-1409
ZHAO Quanhong, DAI Zhongning, REN Chigang, et al. The experiment about relations between Mg/Ca ratios and temperature or salinity in the ostracode shell [J]. Chinese Science Bulletin, 1994, 39(15): 1409-1412. doi: 10.1360/csb1994-39-15-1409
[49] Wansard G, Roca J R, Mezquita F. Experimental determination of strontium and magnesium partitioning in calcite of the freshwater ostracod Herpetocypris intermedia [J]. Fundamental and Applied Limnology, 1999, 145(2): 237-253. doi: 10.1127/archiv-hydrobiol/145/1999/237
[50] 杨藩, 董宁, 乔子真, 等. 青海柴达木盆地与青海湖第四纪介形类Limnocythere的分类与生境[J]. 微体古生物学报, 2008, 25(4):316-332 doi: 10.3969/j.issn.1000-0674.2008.04.002
YANG Fan, DONG Ning, QIAO Zhizhen, et al. Taxonomy and habitat of Quaternary Limnocythere (ostracoda) from the Qaidam Basin and the Qinghaihu Lake, Qinghai [J]. Acta Micropalaeontologica Sinica, 2008, 25(4): 316-332. doi: 10.3969/j.issn.1000-0674.2008.04.002
[51] 庞其清, 翟大有, 赵筑簾, 等. 泥河湾盆地晚新生代微体古生物地层及环境演化的探讨[J]. 地质学报, 2015, 89(5):817-842 doi: 10.3969/j.issn.0001-5717.2015.05.001
PANG Qiqing, ZHAI Dayou, ZHAO Zhulian, et al. Late Cenozoic micropalaeontology in the Nihewan Basin and its implications for environmental evolution [J]. Acta Geologica Sinica, 2015, 89(5): 817-842. doi: 10.3969/j.issn.0001-5717.2015.05.001
[52] Li X Z, Liu W G, Zhang L, et al. Distribution of Recent ostracod species in the Lake Qinghai area in northwestern China and its ecological significance [J]. Ecological Indicators, 2010, 10(4): 880-890. doi: 10.1016/j.ecolind.2010.01.012
[53] Zhai D Y, Xiao J L, Fan J W, et al. Differential transport and preservation of the instars of Limnocythere inopinata (Crustacea, Ostracoda) in three large brackish lakes in northern China [J]. Hydrobiologia, 2015, 747(1): 1-18. doi: 10.1007/s10750-014-2118-8
[54] Zhang W Y, Mischke S, Zhang C J, et al. Ostracod distribution and habitat relationships in the Kunlun Mountains, northern Tibetan Plateau [J]. Quaternary International, 2013, 313-314: 38-46. doi: 10.1016/j.quaint.2013.06.020
[55] 李燕, 金章东. 青海湖介形虫壳体丰度与氧碳同位素的季节和年际变化及其控制因素——来自沉积物捕获器的研究[J]. 地球环境学报, 2013, 4(3):1328-1337 doi: 10.7515/JEE201303005
LI Yan, JIN Zhangdong. Seasonal and interannual variations in abundance and oxygen-carbon isotopic compositions of ostracod shells from Lake Qinghai and their controlling factors: A case study on the sediment trap [J]. Journal of Earth Environment, 2013, 4(3): 1328-1337. doi: 10.7515/JEE201303005
[56] von Grafenstein U, Erlernkeuser H, Trimborn P. Oxygen and carbon isotopes in modern fresh-water ostracod valves: assessing vital offsets and autecological effects of interest for palaeoclimate studies [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 148(1-3): 133-152. doi: 10.1016/S0031-0182(98)00180-1
[57] Davis K J, Dove P M, De Yoreo J J. The role of Mg2+ as an impurity in calcite growth [J]. Science, 2000, 290(5494): 1134-1137. doi: 10.1126/science.290.5494.1134
[58] Stephenson A E, De Yoreo J J, Wu L, et al. Peptides enhance magnesium signature in calcite: insights into origins of vital effects [J]. Science, 2008, 322(5902): 724-727. doi: 10.1126/science.1159417
[59] Teeter J W, Quick T J. Magnesium-salinity relation in the saline lake ostracode Cyprideis americana [J]. Geology, 1990, 18(3): 220-222. doi: 10.1130/0091-7613(1990)018<0220:MSRITS>2.3.CO;2
[60] 朱正杰, 李航, 任世聪, 等. 青海湖近800年来沉积物介形虫Li/Ca比值的古环境指示意义[J]. 海洋地质与第四纪地质, 2010, 30(4):115-121
ZHU Zhengjie, LI Hang, REN Shicong, et al. Palaeoenvironmental implications of Li/Ca ratios of ostracod shells from Lake Qinghai During the past 800 years [J]. Marine Geology & Quaternary Geology, 2010, 30(4): 115-121.
[61] Zhu Z J, Xiang Y, Li Y J. A 1000-year record of Mg/Li and Li/Ca ratios of ostracod shells in Lake Qinghai, NE Tibetan Plateau [J]. Acta Geologica Sinica, 2014, 88(S1): 39-40. doi: 10.1111/1755-6724.12265_16
[62] Gouramanis C, Wilkins D, De Deckker P. 6000 years of environmental changes recorded in Blue Lake, South Australia, based on ostracod ecology and valve chemistry [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 297(1): 223-237. doi: 10.1016/j.palaeo.2010.08.005