新几内亚-所罗门弧俯冲体系动力过程:板块起始俯冲的制约

宫伟, 姜效典, 邢军辉, 李德勇, 徐冲. 新几内亚-所罗门弧俯冲体系动力过程:板块起始俯冲的制约[J]. 海洋地质与第四纪地质, 2019, 39(5): 115-130. doi: 10.16562/j.cnki.0256-1492.2019062801
引用本文: 宫伟, 姜效典, 邢军辉, 李德勇, 徐冲. 新几内亚-所罗门弧俯冲体系动力过程:板块起始俯冲的制约[J]. 海洋地质与第四纪地质, 2019, 39(5): 115-130. doi: 10.16562/j.cnki.0256-1492.2019062801
GONG Wei, JIANG Xiaodian, XING Junhui, LI Deyong, XU Chong. Subduction dynamics of the New-Guinea-Solomon arc system: Constraints from the subduction initiation of the plate[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 115-130. doi: 10.16562/j.cnki.0256-1492.2019062801
Citation: GONG Wei, JIANG Xiaodian, XING Junhui, LI Deyong, XU Chong. Subduction dynamics of the New-Guinea-Solomon arc system: Constraints from the subduction initiation of the plate[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 115-130. doi: 10.16562/j.cnki.0256-1492.2019062801

新几内亚-所罗门弧俯冲体系动力过程:板块起始俯冲的制约

  • 基金项目: 国家自然科学基金重大研究计划重点支持项目“基于流体地球物理表征的新几内亚-所罗门弧俯冲起始动力学机制”(91858215);国家自然科学基金青年科学基金项目“翁通爪哇海台俯冲在新几内亚-所罗门弧体系中所罗门海盆的构造记录”(41906048)
详细信息
    作者简介: 宫伟(1990—),男,博士,讲师,主要从事海洋地质学和构造地质学研究,E-mail:21120411040@ouc.edu.cn
    通讯作者: 姜效典,博士,教授,主要从事构造地质与地球物理研究,E-mail:xdjiang@ouc.edu.cn
  • 中图分类号: P736.1

Subduction dynamics of the New-Guinea-Solomon arc system: Constraints from the subduction initiation of the plate

More Information
  • 新几内亚-所罗门弧(PN-SL)位于印度-澳大利亚板块与太平洋板块汇聚边界、新特提斯构造域东端。晚白垩世以来,逐渐演化形成复杂的沟-弧-盆-台、俯冲时序完整的俯冲构造体系。受多期次、多类型板块俯冲起始作用的制约,PN-SL俯冲体系深部结构呈现出明显的空间差异性:板块俯冲深度由>500 km减小至不足100 km,板块俯冲角度则由>70°减小至30°。俯冲体系东侧毗邻的翁通爪哇海台作为世界上最大的海台,其显著的“凸起”构造以及低密度结构,重新塑造了PN-SL俯冲体系的构造格局,但不同于低密度结构俯冲诱发海沟位置后移、俯冲极性反转二元经典模式,弧后所罗门海盆发生反向俯冲的同时,中新世以来呈现出NW向、NE向和SW向的多向俯冲过程。这意味着翁通爪哇海台与PN-SL俯冲体系汇聚形变过程并非仅依据板块密度变化来简单解释,需要考虑其复杂的构造环境和诸多的构造要素。特别是作为岩石圈强度的重要影响因子—俯冲体系流体活动,导致岩石圈强度减弱、熔点降低的同时,伴随板块俯冲向地球深部运移,促使板片脱水并与地幔楔发生水化交代作用,进而改变壳幔物质组成及流变学性质,诱发地幔楔部分熔融和岛弧岩浆活动,是理解板块俯冲构造动力的关键切入点。

  • 加载中
  • 图 1  新几内亚-所罗门弧俯冲体系区域构造图

    Figure 1. 

    图 2  PN-SL俯冲体系地震及震源机制展布图

    Figure 2. 

    图 3  测线L地形及PN-SL俯冲体系深部结构示意图(测线L位置见图1所示)

    Figure 3. 

    图 4  PN-SL俯冲体系关键构造演化阶段模式图(修改自Schellart等[3]

    Figure 4. 

    图 5  翁通爪哇海台与PN-SL俯冲体系拼贴构造结构剖面(测线位置见图1)

    Figure 5. 

    图 6  海台俯冲诱发新俯冲带形成示意图

    Figure 6. 

    图 7  翁通爪哇海台俯冲碰撞诱发PN-SL俯冲体系“反向、多向俯冲”示意图(修改自Holm等[4]

    Figure 7. 

    图 8  俯冲体系流体分布及迁移示意图(修改自Rüpke等[101]

    Figure 8. 

  • [1]

    Wessel P, Kroenke L W. Ontong Java Plateau and late Neogene changes in Pacific plate motion [J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B12): 28255-28277. doi: 10.1029/2000JB900290

    [2]

    Stotz I L, Iaffaldano G, Davies D R. Late Miocene Pacific plate kinematic change explained with coupled global models of mantle and lithosphere dynamics [J]. Geophysical Research Letters, 2017, 44(14): 7177-7186. doi: 10.1002/2017GL073920

    [3]

    Schellart W P, Lister G S, Toy V G. A Late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region: Tectonics controlled by subduction and slab rollback processes [J]. Earth-Science Reviews, 2006, 76(3-4): 191-233. doi: 10.1016/j.earscirev.2006.01.002

    [4]

    Holm R J, Rosenbaum G, Richards S W. Post 8 Ma reconstruction of Papua New Guinea and Solomon Islands: Microplate tectonics in a convergent plate boundary setting [J]. Earth-Science Reviews, 2016, 156: 66-81. doi: 10.1016/j.earscirev.2016.03.005

    [5]

    Both R, Crook K, Taylor B, et al. Hydrothermal chimneys and associated fauna in the Manus Back-Arc Basin, Papua New Guinea [J]. Eos, Transactions American Geophysical Union, 1986, 67(21): 489-490. doi: 10.1029/EO067i021p00489

    [6]

    Cooper P A, Taylor B. Polarity reversal in the Solomon Islands arc [J]. Nature, 1985, 314(6010): 428-430. doi: 10.1038/314428a0

    [7]

    Petterson M G, Babbs T, Neal C R, et al. Geological-tectonic framework of Solomon Islands, SW Pacific: Crustal accretion and growth within an intra-oceanic setting [J]. Tectonophysics, 1999, 301(1-2): 35-60. doi: 10.1016/S0040-1951(98)00214-5

    [8]

    Chadwick J, Perfit M, McInnes B, et al. Arc lavas on both sides of a trench: Slab window effects at the Solomon Islands triple junction, SW Pacific [J]. Earth and Planetary Science Letters, 2009, 279(3-4): 293-302. doi: 10.1016/j.jpgl.2009.01.001

    [9]

    Schuth S, König S, Münker C. Subduction zone dynamics in the SW Pacific plate boundary region constrained from high-precision Pb isotope data [J]. Earth and Planetary Science Letters, 2011, 311(3-4): 328-338. doi: 10.1016/j.jpgl.2011.09.006

    [10]

    Taylor B. Bismarck Sea: Evolution of a back-arc basin [J]. Geology, 1979, 7(4): 171-174. doi: 10.1130/0091-7613(1979)7<171:BSEOAB>2.0.CO;2

    [11]

    Wallace L M, Stevens C, Silver E, et al. GPS and seismological constraints on active tectonics and arc-continent collision in Papua New Guinea: Implications for mechanics of microplate rotations in a plate boundary zone [J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B5): B05404.

    [12]

    Cooper P, Taylor B. Seismotectonics of New Guinea: A model for arc reversal following arc-continent collision [J]. Tectonics, 1987, 6(1): 53-67. doi: 10.1029/TC006i001p00053

    [13]

    Holm R J, Richards S W. A re-evaluation of arc-continent collision and along-arc variation in the Bismarck Sea region, Papua New Guinea [J]. Australian Journal of Earth Sciences, 2013, 60(5): 605-619. doi: 10.1080/08120099.2013.824505

    [14]

    Westaway R. Active low-angle normal faulting in the Woodlark extensional province, Papua New Guinea: A physical model [J]. Tectonics, 2005, 24(6): TC6003.

    [15]

    Phinney E J, Mann P, Coffin M F, et al. Sequence stratigraphy, structural style, and age of deformation of the Malaita accretionary prism (Solomon arc-Ontong Java Plateau convergent zone) [J]. Tectonophysics, 2004, 389(3-4): 221-246. doi: 10.1016/j.tecto.2003.10.025

    [16]

    Inoue H, Coffin M F, Nakamura Y, et al. Intrabasement reflections of the Ontong Java Plateau: Implications for plateau construction [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4): Q04014.

    [17]

    Baldwin S L, Fitzgerald P G, Webb L E. Tectonics of the New Guinea region [J]. Annual Review of Earth and Planetary Sciences, 2012, 40(1): 495-520. doi: 10.1146/annurev-earth-040809-152540

    [18]

    Holm R J, Spandler C, Richards S W. Melanesian arc far-field response to collision of the Ontong Java Plateau: Geochronology and petrogenesis of the Simuku Igneous Complex, New Britain, Papua New Guinea [J]. Tectonophysics, 2013, 603: 189-212. doi: 10.1016/j.tecto.2013.05.029

    [19]

    McInnes B I A, Gregoire M, Binns R A, et al. Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea: petrology and geochemistry of fluid-metasomatised mantle wedge xenoliths [J]. Earth and Planetary Science Letters, 2001, 188(1-2): 169-183. doi: 10.1016/S0012-821X(01)00306-5

    [20]

    Bénard A, Woodland A B, Arculus R J, et al. Variation in sub-arc mantle oxygen fugacity during partial melting recorded in refractory peridotite xenoliths from the West Bismarck Arc [J]. Chemical Geology, 2018, 486: 16-30. doi: 10.1016/j.chemgeo.2018.03.004

    [21]

    Eguchi T, Fujinawa Y, Ukawa M, et al. Earthquakes associated with the back-arc opening in the eastern Bismarck Sea: activity, mechanisms, and tectonics [J]. Physics of the Earth and Planetary Interiors, 1989, 56(3-4): 189-209. doi: 10.1016/0031-9201(89)90157-X

    [22]

    Bird P. An updated digital model of plate boundaries [J]. Geochemistry, Geophysics, Geosystems, 2003, 4(3): 1027.

    [23]

    Binns R A, Scott S D. Actively forming polymetallic sulfide deposits associated with felsic volcanic rocks in the Eastern Manus Back-arc basin, Papua New Guinea [J]. Economic Geology, 1993, 88(8): 2226-2236. doi: 10.2113/gsecongeo.88.8.2226

    [24]

    Crook K A W, Taylor B. Structure and Quaternary tectonic history of the Woodlark triple junction region, Solomon islands [J]. Marine Geophysical Researches, 1994, 16(1): 65-89. doi: 10.1007/BF01812446

    [25]

    Taylor B, Goodliffe A, Martinez F, et al. Continental rifting and initial sea-floor spreading in the Woodlark basin [J]. Nature, 1995, 374(6522): 534-537. doi: 10.1038/374534a0

    [26]

    Abers G A, Mutter C Z, Fang J. Shallow dips of normal faults during rapid extension: Earthquakes in the Woodlark-D’Entrecasteaux rift system, Papua New Guinea [J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B7): 15301-15317. doi: 10.1029/97JB00787

    [27]

    Abers G A, Ferris A, Craig M, et al. Mantle compensation of active metamorphic core complexes at Woodlark rift in Papua New Guinea [J]. Nature, 2002, 418(6900): 862-865. doi: 10.1038/nature00990

    [28]

    Bruns T R, Vedder J G, Cooper A K. Geology of the Shortland basin region, central Solomons Trough, Solomon Islands-review and new findings[C]//Vedder J G, Bruns T R. Geology and offshore resources of Pacific island arcs-Solomon Islands and Bougainville, Papua New Guinea Regions, Earth Science Series. Houston, Texas: Circum-Pacific Council for Energy and Mineral Resources, 1989: 125-144.

    [29]

    Mann P, Taira A. Global tectonic significance of the Solomon Islands and Ontong Java Plateau convergent zone [J]. Tectonophysics, 2004, 389(3-4): 137-190. doi: 10.1016/j.tecto.2003.10.024

    [30]

    Zhang Z, Li S Z, Tian J W, et al. Formation mechanism of the moniliform seamounts outside the West Melanesian Trench [J]. Geological Journal, 2018, 53(4): 1604-1610. doi: 10.1002/gj.2979

    [31]

    Hall R, Spakman W. Subducted slabs beneath the eastern Indonesia-Tonga region: insights from tomography [J]. Earth and Planetary Science Letters, 2002, 201(2): 321-336. doi: 10.1016/S0012-821X(02)00705-7

    [32]

    Abers G A, Roecker S W. Deep structure of an Arc-Continent collision: Earthquake relocation and inversion for upper mantle P and S wave velocities beneath Papua New Guinea [J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B4): 6379-6401. doi: 10.1029/91JB00145

    [33]

    Woodhead J, Hergt J, Sandiford M, et al. The big crunch: Physical and chemical expressions of arc/continent collision in the Western Bismarck arc [J]. Journal of Volcanology and Geothermal Research, 2010, 190(1-2): 11-24. doi: 10.1016/j.jvolgeores.2009.03.003

    [34]

    Mohiuddin A, Long M D, Lynner C. Mid-mantle seismic anisotropy beneath southwestern Pacific subduction systems and implications for mid-mantle deformation [J]. Physics of the Earth and Planetary Interiors, 2015, 245: 1-14. doi: 10.1016/j.pepi.2015.05.003

    [35]

    张培震, 张会平, 郑文俊, 等. 东亚大陆新生代构造演化[J]. 地震地质, 2014, 36(3):574-585 doi: 10.3969/j.issn.0253-4967.2014.03.003

    ZHANG Peizhen, ZHANG Huiping, ZHENG Wenjun, et al. Cenozoic tectonic evolution of continental Eastern Asia [J]. Seismology and Geology, 2014, 36(3): 574-585. doi: 10.3969/j.issn.0253-4967.2014.03.003

    [36]

    Seton M, Müller R D, Zahirovic S, et al. Global continental and ocean basin reconstructions since 200 Ma [J]. Earth-Science Reviews, 2012, 113(3-4): 212-270. doi: 10.1016/j.earscirev.2012.03.002

    [37]

    Schellart W P, Spakman W. Australian plate motion and topography linked to fossil New Guinea slab below Lake Eyre [J]. Earth and Planetary Science Letters, 2015, 421: 107-116. doi: 10.1016/j.jpgl.2015.03.036

    [38]

    Zahirovic S, Matthews K J, Flament N, et al. Tectonic evolution and deep mantle structure of the eastern Tethys since the latest Jurassic [J]. Earth-Science Reviews, 2016, 162: 293-337. doi: 10.1016/j.earscirev.2016.09.005

    [39]

    Crawford A J, Meffre S, Symonds P A. 120 to 0 Ma tectonic evolution of the southwest Pacific and analogous geological evolution of the 600 to 220 Ma Tasman Fold Belt System[C]//Evolution and Dynamics of the Australian Plate. Geological Society of Australia Special Publication, 2003, 22: 377-397.

    [40]

    Petterson M G, Neal C R, Mahoney J J, et al. Structure and deformation of north and central Malaita, Solomon Islands: tectonic implications for the Ontong Java Plateau-Solomon arc collision, and for the fate of oceanic plateaus [J]. Tectonophysics, 1997, 283(1-4): 1-33. doi: 10.1016/S0040-1951(97)00206-0

    [41]

    Davies H L. The geology of New Guinea - the cordilleran margin of the Australian continent [J]. Episodes, 2012, 35(1): 87-102.

    [42]

    Sun W D, Arculus R J, Kamenetsky V S, et al. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization [J]. Nature, 2004, 431(7011): 975-978. doi: 10.1038/nature02972

    [43]

    Sun W D, Bennett V C, Eggins S M, et al. Enhanced mantle-to-crust rhenium transfer in undegassed arc magmas [J]. Nature, 2003, 422(6929): 294-297. doi: 10.1038/nature01482

    [44]

    Sun W D, Ding X, Hu Y H, et al. The golden transformation of the Cretaceous plate subduction in the west Pacific [J]. Earth and Planetary Science Letters, 2007, 262(3-4): 533-542. doi: 10.1016/j.jpgl.2007.08.021

    [45]

    Holm R J, Spandler C, Richards S W. Continental collision, orogenesis and arc magmatism of the Miocene Maramuni arc, Papua New Guinea [J]. Gondwana Research, 2015, 28(3): 1117-1136. doi: 10.1016/j.gr.2014.09.011

    [46]

    Petterson M G, Haldane M I, Smith D J, et al. Geochemistry and petrogenesis of the Gallego Volcanic Field, Solomon Islands, SW Pacific and geotectonic implications [J]. Lithos, 2011, 125(3-4): 915-927. doi: 10.1016/j.lithos.2011.05.008

    [47]

    Soustelle V, Tommasi A, Demouchy S, et al. Melt-rock interactions, deformation, hydration and seismic properties in the sub-arc lithospheric mantle inferred from xenoliths from seamounts near Lihir, Papua New Guinea [J]. Tectonophysics, 2013, 608: 330-345. doi: 10.1016/j.tecto.2013.09.024

    [48]

    崔华伟, 万永革, 黄骥超, 等. 2015年3月新不列颠Ms7.4地震震源及邻区构造应力场特征[J]. 地球物理学报, 2017, 60(3):985-998 doi: 10.6038/cjg20170313

    CUI Huawei, WAN Yongge, HUANG Jichao, et al. The tectonic stress field in the source of the New Britain Ms 7.4 earthquake of March 2015 and adjacent areas [J]. Chinese Journal of Geophysics, 2017, 60(3): 985-998. doi: 10.6038/cjg20170313

    [49]

    Chen T, Luo H P, Furlong K P. A Bayesian rupture model of the 2007 Mw 8.1 Solomon Islands earthquake in Southwest Pacific with coral reef displacement measurements [J]. Journal of Asian Earth Sciences, 2017, 139: 92-97.

    [50]

    Yang G L, Shen C Y, Wang J P, et al. Isostatic anomaly characteristics and tectonism of the New Britain Trench and neighboring Papua New Guinea [J]. Geodesy and Geodynamics, 2018, 9(5): 404-410. doi: 10.1016/j.geog.2018.04.006

    [51]

    Mahoney J J, Storey M, Duncan R A, et al. Geochemistry and age of the Ontong Java Plateau[C]//Pringle M S, Sager W W, Sliter W V, et al. The Mesozoic Pacific: Geology, Tectonics, and Volcanism: A Volume in Memory of Sy Schlanger. Washington, D.C.: AGU, 1993, 77: 233-261.

    [52]

    Taylor B. The single largest oceanic plateau: Ontong Java-Manihiki-Hikurangi [J]. Earth and Planetary Science Letters, 2006, 241(3-4): 372-380. doi: 10.1016/j.jpgl.2005.11.049

    [53]

    Hanyu T, Tejada M L G, Shimizu K, et al. Collision-induced post-plateau volcanism: Evidence from a seamount on Ontong Java Plateau [J]. Lithos, 2017, 294-295: 87-96. doi: 10.1016/j.lithos.2017.09.029

    [54]

    Chandler M T, Wessel P, Sager W W. Analysis of Ontong Java Plateau palaeolatitudes: evidence for large-scale rotation since 123 Ma? [J]. Geophysical Journal International, 2013, 194(1): 18-29. doi: 10.1093/gji/ggt075

    [55]

    Chandler M T, Wessel P, Taylor B, et al. Reconstructing Ontong Java Nui: Implications for Pacific absolute plate motion, hotspot drift and true polar wander [J]. Earth and Planetary Science Letters, 2012, 331-332: 140-151. doi: 10.1016/j.jpgl.2012.03.017

    [56]

    Hall S, Riisager P. Palaeomagnetic palaeolatitudes of the Ontong Java Plateau from 120 to 55 Ma: implications for the apparent polar wander path of the Pacific Plate [J]. Geophysical Journal International, 2007, 169(2): 455-470. doi: 10.1111/j.1365-246X.2007.03338.x

    [57]

    Gladczenko T P, Coffin M F, Eldholm O. Crustal structure of the Ontong Java Plateau: Modeling of new gravity and existing seismic data [J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B10): 22711-22729. doi: 10.1029/97JB01636

    [58]

    Klosko E R, Russo R M, Okal E A, et al. Evidence for a rheologically strong chemical mantle root beneath the Ontong-Java Plateau [J]. Earth and Planetary Science Letters, 2001, 186(3-4): 347-361. doi: 10.1016/S0012-821X(01)00235-7

    [59]

    Taira A, Mann P, Rahardiawan R. Incipient subduction of the Ontong Java Plateau along the North Solomon trench [J]. Tectonophysics, 2004, 389(3-4): 247-266. doi: 10.1016/j.tecto.2004.07.052

    [60]

    Tommasi A, Ishikawa A. Microstructures, composition, and seismic properties of the Ontong Java Plateau mantle root [J]. Geochemistry, Geophysics, Geosystems, 2014, 15(11): 4547-4569. doi: 10.1002/2014GC005452

    [61]

    Covellone B M, Savage B, Shen Y. Seismic wave speed structure of the Ontong Java Plateau [J]. Earth and Planetary Science Letters, 2015, 420: 140-150. doi: 10.1016/j.jpgl.2015.03.033

    [62]

    Tharimena S, Rychert C A, Harmon N. Seismic imaging of a mid-lithospheric discontinuity beneath Ontong Java Plateau [J]. Earth and Planetary Science Letters, 2016, 450: 62-70. doi: 10.1016/j.jpgl.2016.06.026

    [63]

    Ely J C, Neal C R. Using platinum-group elements to investigate the origin of the Ontong Java Plateau, SW Pacific [J]. Chemical Geology, 2003, 196(1-4): 235-257. doi: 10.1016/S0009-2541(02)00415-1

    [64]

    Fitton J G, Godard M. Origin and evolution of magmas on the Ontong Java Plateau [J]. Geological Society, London, Special Publications, 2004, 229(1): 151-178. doi: 10.1144/GSL.SP.2004.229.01.10

    [65]

    Ishikawa A, Kuritani T, Makishima A, et al. Ancient recycled crust beneath the Ontong Java Plateau: Isotopic evidence from the garnet clinopyroxenite xenoliths, Malaita, Solomon Islands [J]. Earth and Planetary Science Letters, 2007, 259(1-2): 134-148. doi: 10.1016/j.jpgl.2007.04.034

    [66]

    Ishikawa A, Pearson D G, Dale C W. Ancient Os isotope signatures from the Ontong Java Plateau lithosphere: Tracing lithospheric accretion history [J]. Earth and Planetary Science Letters, 2011, 301(1-2): 159-170. doi: 10.1016/j.jpgl.2010.10.034

    [67]

    Tejada M L G, Suzuki K, Hanyu T, et al. Cryptic lower crustal signature in the source of the Ontong Java Plateau revealed by Os and Hf isotopes [J]. Earth and Planetary Science Letters, 2013, 377-378: 84-96. doi: 10.1016/j.jpgl.2013.07.022

    [68]

    Demouchy S, Ishikawa A, Tommasi A, et al. Characterization of hydration in the mantle lithosphere: Peridotite xenoliths from the Ontong Java Plateau as an example [J]. Lithos, 2015, 212-215: 189-201. doi: 10.1016/j.lithos.2014.11.005

    [69]

    Knesel K M, Cohen B E, Vasconcelos P M, et al. Rapid change in drift of the Australian plate records collision with Ontong Java plateau [J]. Nature, 2008, 454(7205): 754-757. doi: 10.1038/nature07138

    [70]

    Korenaga J. Why did not the Ontong Java Plateau form subaerially? [J]. Earth and Planetary Science Letters, 2005, 234(3-4): 385-399. doi: 10.1016/j.jpgl.2005.03.011

    [71]

    Ingle S, Coffin M F. Impact origin for the greater Ontong Java Plateau? [J]. Earth and Planetary Science Letters, 2004, 218(1-2): 123-134. doi: 10.1016/S0012-821X(03)00629-0

    [72]

    Roberge J, Wallace P J, White R V, et al. Anomalous uplift and subsidence of the Ontong Java Plateau inferred from CO2 contents of submarine basaltic glasses [J]. Geology, 2005, 33(6): 501-504. doi: 10.1130/G21142.1

    [73]

    Ito G, van Keken P E. Hot spots and melting anomalies [J]. Treatise on Geophysics, 2007, 7: 371-435. doi: 10.1016/B978-044452748-6/00123-1

    [74]

    Neal C R, Mahoney J J, Kroenke L W, et al. The Ontong Java Plateau[C]//Mahoney J J, Coffin M F. Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. American Geophysical Union Geophysical Monograph Series, 1997, 100: 183-216.

    [75]

    Ito G, Clift P D. Subsidence and growth of Pacific Cretaceous plateaus [J]. Earth and Planetary Science Letters, 1998, 161(1-4): 85-100. doi: 10.1016/S0012-821X(98)00139-3

    [76]

    Tejada M L G, Mahoney J J, Neal C R, et al. Basement geochemistry and geochronology of central Malaita, Solomon Islands, with implications for the origin and evolution of the Ontong Java Plateau [J]. Journal of Petrology, 2002, 43(3): 449-484. doi: 10.1093/petrology/43.3.449

    [77]

    Richardson W P, Okal E A, Van der Lee S. Rayleigh-wave tomography of the Ontong-Java Plateau [J]. Physics of the Earth and Planetary Interiors, 2000, 118(1-2): 29-51. doi: 10.1016/S0031-9201(99)00122-3

    [78]

    Miura S, Suyehiro K, Shinohara M, et al. Seismological structure and implications of collision between the Ontong Java Plateau and Solomon Island Arc from ocean bottom seismometer-airgun data [J]. Tectonophysics, 2004, 389(3-4): 191-220. doi: 10.1016/j.tecto.2003.09.029

    [79]

    Smart K A, Tappe S, Ishikawa A, et al. K-rich hydrous mantle lithosphere beneath the Ontong Java Plateau: Significance for the genesis of oceanic basalts and Archean continents [J]. Geochimica et Cosmochimica Acta, 2019, 248: 311-342. doi: 10.1016/j.gca.2019.01.013

    [80]

    Stern R J. Subduction initiation: spontaneous and induced [J]. Earth and Planetary Science Letters, 2004, 226(3-4): 275-292. doi: 10.1016/S0012-821X(04)00498-4

    [81]

    Stern R J, Gerya T. Subduction initiation in nature and models: A review [J]. Tectonophysics, 2018, 746: 173-198. doi: 10.1016/j.tecto.2017.10.014

    [82]

    Maruyama S, Utsunomiya A, Ishikawa A. Ontong-Java Plateau, the World's largest Oceanic Plateau, has Been subducted 50%, with the Remaining 50% on the Surface, and with a < 1% accretion on the hanging wall of the Solomon Islands [J]. Journal of Geography, 2011, 120(6): 1035-1044. doi: 10.5026/jgeography.120.1035

    [83]

    Stern R J. 板块构造启动的时间和机制: 理论和经验探索[J]. 科学通报, 2007, 52(5):578-591 doi: 10.3321/j.issn:0023-074X.2007.05.014

    STERN R J. When and how did plate tectonics begin? Theoretical and empirical considerations [J]. Chinese Science Bulletin, 2007, 52(5): 578-591. doi: 10.3321/j.issn:0023-074X.2007.05.014

    [84]

    Niu Y L, O'Hara M J, Pearce J A. Initiation of subduction zones as a consequence of lateral compositional buoyancy contrast within the lithosphere: a petrological perspective [J]. Journal of Petrology, 2003, 44(5): 851-866. doi: 10.1093/petrology/44.5.851

    [85]

    Hall C E, Gurnis M, Sdrolias M, et al. Catastrophic initiation of subduction following forced convergence across fracture zones [J]. Earth and Planetary Science Letters, 2003, 212(1-2): 15-30. doi: 10.1016/S0012-821X(03)00242-5

    [86]

    Gurnis M, Hall C, Lavier L. Evolving force balance during incipient subduction [J]. Geochemistry, Geophysics, Geosystems, 2004, 5(7): Q07001.

    [87]

    Nikolaeva K, Gerya T V, Marques F O. Subduction initiation at passive margins: Numerical modeling [J]. Journal of Geophysical Research, 2010, 115(B3): B03406.

    [88]

    Ishizuka O, Tani K, Reagan M K, et al. The timescales of subduction initiation and subsequent evolution of an oceanic island arc [J]. Earth and Planetary Science Letters, 2011, 306(3-4): 229-240. doi: 10.1016/j.jpgl.2011.04.006

    [89]

    Musgrave R J. Paleomagnetism and tectonics of Malaita, Solomon islands [J]. Tectonics, 1990, 9(4): 735-759. doi: 10.1029/TC009i004p00735

    [90]

    Honza E, Davies H L, Keene J B, et al. Plate boundaries and evolution of the Solomon Sea region [J]. Geo-Marine Letters, 1987, 7(3): 161-168. doi: 10.1007/BF02238046

    [91]

    Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations [J]. Journal of Asian Earth Sciences, 2002, 20(4): 353-431. doi: 10.1016/S1367-9120(01)00069-4

    [92]

    李忠海, 刘明启, GERYA T. 俯冲隧道中物质运移和流体-熔体活动的动力学数值模拟[J]. 中国科学: 地球科学, 2015, 58(8):1251-1268

    LI Zhonghai, LIU Mingqi, GERYA T. Material transportation and fluid-melt activity in the subduction channel: numerical modeling [J]. Science China: Earth Sciences, 2015, 58(8): 1251-1268.

    [93]

    Hacker B R, Peacock S M, Abers G A, et al. Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? [J]. Journal of Geophysical Research, 2003, 108(b1): 2030.

    [94]

    郑永飞, 陈仁旭, 徐峥, 等. 俯冲带中的水迁移[J]. 中国科学: 地球科学, 2016, 59(4):651-682

    ZHENG Yongfei, CHEN Renxu, XU Zheng, et al. The transport of water in subduction zones [J]. Science China: Earth Sciences, 2016, 59(4): 651-682.

    [95]

    Sumino H, Burgess R, Mizukami T, et al. Seawater-derived noble gases and halogens preserved in exhumed mantle wedge peridotite [J]. Earth and Planetary Science Letters, 2010, 294(1-2): 163-172. doi: 10.1016/j.jpgl.2010.03.029

    [96]

    Alt J C, Garrido C J, Shanks W C III, et al. Recycling of water, carbon, and sulfur during subduction of serpentinites: A stable isotope study of Cerro del Almirez, Spain [J]. Earth and Planetary Science Letters, 2012, 327-328: 50-60. doi: 10.1016/j.jpgl.2012.01.029

    [97]

    Stern R J. Subduction zones [J]. Reviews of Geophysics, 2002, 40(4): 1012. doi: 10.1029/2001RG000108

    [98]

    van der Lee S, Regenauer-Lieb K, Yuen D A. The role of water in connecting past and future episodes of subduction [J]. Earth and Planetary Science Letters, 2008, 273(1-2): 15-27. doi: 10.1016/j.jpgl.2008.04.041

    [99]

    孙卫东, 凌明星, 杨晓勇, 等. 洋脊俯冲与斑岩铜金矿成矿[J]. 中国科学: 地球科学, 2010, 53(4):475-484

    SUN Weidong, LING Mingxing, YANG Xiaoyong, et al. Ridge subduction and porphyry copper-gold mineralization: An overview [J]. Science China: Earth Sciences, 2010, 53(4): 475-484.

    [100]

    Ribeiro J M, Lee C T A. An imbalance in the deep water cycle at subduction zones: The potential importance of the fore-arc mantle [J]. Earth and Planetary Science Letters, 2017, 479: 298-309. doi: 10.1016/j.jpgl.2017.09.018

    [101]

    Rüpke L H, Morgan J P, Hort M, et al. Serpentine and the subduction zone water cycle [J]. Earth and Planetary Science Letters, 2004, 223(1-2): 17-34. doi: 10.1016/j.jpgl.2004.04.018

    [102]

    Gerya T V, Stern R J, Baes M, et al. Plate tectonics on the Earth triggered by plume-induced subduction initiation [J]. Nature, 2015, 527(7577): 221-225. doi: 10.1038/nature15752

    [103]

    Shao W Y, Chung S L, Chen W S, et al. Old continental zircons from a young oceanic arc, Eastern Taiwan: Implications for Luzon subduction initiation and Asian accretionary orogeny [J]. Geology, 2015, 43(6): 479-482. doi: 10.1130/G36499.1

    [104]

    MacKenzie L S, Abers G A, Rondenay S, et al. Imaging a steeply dipping subducting slab in Southern Central America [J]. Earth and Planetary Science Letters, 2010, 296(3-4): 459-468. doi: 10.1016/j.jpgl.2010.05.033

    [105]

    Zhao D P. Big mantle wedge, anisotropy, slabs and earthquakes beneath the Japan Sea [J]. Physics of the Earth and Planetary Interiors, 2017, 270: 9-28. doi: 10.1016/j.pepi.2017.06.009

    [106]

    Dymkova D, Gerya T. Porous fluid flow enables oceanic subduction initiation on Earth [J]. Geophysical Research Letters, 2013, 40(21): 5671-5676. doi: 10.1002/2013GL057798

    [107]

    Leng W, Gurnis M. Subduction initiation at relic arcs [J]. Geophysical Research Letters, 2015, 42(17): 7014-7021. doi: 10.1002/2015GL064985

    [108]

    Nair R, Chacko T. Role of oceanic plateaus in the initiation of subduction and origin of continental crust [J]. Geology, 2008, 36(7): 583-586. doi: 10.1130/G24773A.1

    [109]

    Korenaga J. Thermal cracking and the deep hydration of oceanic lithosphere: A key to the generation of plate tectonics? [J]. Journal of Geophysical Research, 2007, 112(B5): B05408.

    [110]

    李忠海. 大陆俯冲-碰撞-折返的动力学数值模拟研究综述[J]. 中国科学: 地球科学, 2014, 57(1):47-69

    LI Zhonghai. A review on the numerical geodynamic modeling of continental subduction, collision and exhumation [J]. Science China: Earth Sciences, 2014, 57(1): 47-69.

    [111]

    冷伟, 毛伟. 俯冲带热结构的动力学模型研究[J]. 中国科学: 地球科学, 2015, 58(7):1070-1083

    LENG Wei, MAO Wei. Geodynamic modeling of thermal structure of subduction zones [J]. Science China: Earth Sciences, 2015, 58(7): 1070-1083.

    [112]

    Nakao A, Iwamori H, Nakakuki T. Effects of water transportation on subduction dynamics: Roles of viscosity and density reduction [J]. Earth and Planetary Science Letters, 2016, 454: 178-191. doi: 10.1016/j.jpgl.2016.08.016

    [113]

    Arcay D, Tric E, Doin M P. Numerical simulations of subduction zones: Effect of slab dehydration on the mantle wedge dynamics [J]. Physics of the Earth and Planetary Interiors, 2005, 149(1-2): 133-153. doi: 10.1016/j.pepi.2004.08.020

    [114]

    Baes M, Gerya T, Sobolev S V. 3-D thermo-mechanical modeling of plume-induced subduction initiation [J]. Earth and Planetary Science Letters, 2016, 453: 193-203. doi: 10.1016/j.jpgl.2016.08.023

  • 加载中

(8)

计量
  • 文章访问数:  2994
  • PDF下载数:  42
  • 施引文献:  0
出版历程
收稿日期:  2019-06-28
修回日期:  2019-07-21
刊出日期:  2019-10-25

目录