Simulation of bottom boundaries of abiotic methane hydrate stability zone in some marine serpentinization areas
-
摘要:
随着深海调查研究的不断深入,发现大洋基性和超基性岩与水相互作用可发生蛇纹岩化作用产生无机成因甲烷等烃类气体,可能在大洋区海底形成水合物。为评估大洋蛇纹岩化无机成因甲烷水合物生成热力学条件及水合物稳定带分布特征,本文利用实测的原位温度、水深等条件,结合甲烷水合物-水-游离气三相平衡温压条件,计算了马里亚纳弧前蛇纹岩泥火山、北大西洋Fram海峡超慢速扩张脊和Lost City慢速扩张脊3个不同地质构造环境的蛇纹岩化发育的大洋区海底环境甲烷水合物稳定带底界,并对其水合物发育潜力进行了评估。研究表明马里亚纳弧前蛇纹岩泥火山和北大西洋Fram海峡超慢速扩张脊满足天然气水合物发育的热力学条件,可能发育有甲烷水合物,相应的水合物稳定带底界深度分别约为858~2 515和153~232 mbsf。大西洋Lost City喷口附近发育甲烷水合物可能性较小。
Abstract:Fluids circulating through active serpentinization systems are often highly enriched in methane. When the fluid enriched in abiotic methane migrates upward, gas hydrate could form if there occur suitable thermodynamic conditions. In order to investigate the thermodynamic conditions of the stability zone of abiotic methane hydrate in marine serpentinization areas, we calculated the depth of the bottom boundaries of gas hydrate stability zone in three distinctive serpentinization areas, i.e. the Mariana forearc serpentinized mud volcanos, the Fram strait (an ultraslow- spreading ridge) and the Lost City (a slow spreading ridge). Our results show that the thermodynamic conditions are satisfied for forming the hydrate stability zone in the areas of Mariana forearc serpentinite mud volcanos and the ultraslow-spreading ridge at the Fram Strait. Calculation shows the depth of the bottom boundaries of gas hydrate stability zone is around 858~2515 mbsf at Mariana forearc mud volcano area and 153~232 mbsf at the Fram Strait. However, the temperature of vent fluids found at the Lost City is relative higher than needed for the formation of gas hydrate stability zone.
-
图 4 甲烷水合物形成的温压相图[2]及Lost City渗漏流体温度和压力分布图(图中长方形为Lost City的温度和压力分布范围)
Figure 4.
图 6 IODP1492A浅层顶空气甲烷浓度[31]
Figure 6.
表 1 马里亚纳弧前蛇纹岩泥火山的天然气水合物稳定带深度及参数
Table 1. The depth and parameters of gas hydrate stability zone at Mariana forearc serpentinite mud volcano area
站位 ODP1200 IODP1491 IODP1492 IODP1493 ,1494 ,1495 IODP1496 IODP1497 IODP1498 水深/m 2 910 4 492 3 666 3 358 1 243 2 018 3 396 海底温度/°C 1.67 1.55 1.56 1.73 3.99 2.29 3.905 地温梯度/(°C/km) 10 20 12 26.5 14.3 11.7 11.7 底界/mbsf 2 515 1 290 2 160 858 1 085 1 820 2 130 表 2 Fram海峡天然气水合物稳定带深度及参数
Table 2. The depth and parameters of gas hydrate stability zone at Fram Strait
站位 ODP909C ODP910 ODP911 ODP912 水深/m 2 526 567 918 1 048 海底温度/°C 0.30 3.30 −0.277 −0.537 1 地温梯度/(°C/km) 88 37 67.8 64.8 底界/mbsf 232 153 196 210 -
[1] Johnson A H. Global resource potential of gas hydrate-a new calculation[C]//Proceedings of the 7th International Conference on Gas Hydrates. Edinburgh, Scotland, United Kingdom, 2011.
[2] Sloan E D, Koh C A. Clathrate Hydrates of Natural Gases[M]. 3rd ed. New York: CRC Press, 2008.
[3] Sloan E D Jr. Clathrate Hydrates of Natural Gases, Revised and Expanded[M]. 2nd ed. New York: CRC Press, 1998.
[4] Maslin M, Owen M, Betts R, et al. Gas hydrates: Past and future geohazard? [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 368(1919): 2369-2393. doi: 10.1098/rsta.2010.0065
[5] Kennett J P, Cannariato K G, Hendy I L, et al. The clathrate gun hypothesis[M]//Methane Hydrates in Quaternary Climate Change: The Clathrate Gun Hypothesis. Washington, DC: American Geophysical Union, 2003, 54: 105-107.
[6] Davie M K, Buffett B A. Sources of methane for marine gas hydrate: inferences from a comparison of observations and numerical models [J]. Earth and Planetary Science Letters, 2003, 206(1-2): 51-63. doi: 10.1016/S0012-821X(02)01064-6
[7] 苏正, 陈多福. 海洋天然气水合物的类型及特征[J]. 大地构造与成矿学, 2006, 30(2):256-264 doi: 10.3969/j.issn.1001-1552.2006.02.016
SU Zheng, CHEN Duofu. Types of gas hydrates and their characteristics in marine environments [J]. Geotectonica et Metallogenia, 2006, 30(2): 256-264. doi: 10.3969/j.issn.1001-1552.2006.02.016
[8] Paull C K, Dillon W P. Natural Gas Hydrates: Occurrence, Distribution, and Detection[M]. Washington, D. C.: American Geophysical Union, 2001: 67-84.
[9] Mével C. Serpentinization of abyssal peridotites at mid-ocean ridges [J]. Comptes Rendus Geoscience, 2003, 335(10-11): 825-852. doi: 10.1016/j.crte.2003.08.006
[10] Evans B W, Hattori K, Barronet A. Serpentinite: What, why, where [J]. Elements, 2013, 9(2): 99-106. doi: 10.2113/gselements.9.2.99
[11] Charlou J L, Fouquet Y, Bougault H, et al. Intense CH4 plumes generated by serpentinization of ultramafic rocks at the intersection of the 15°20'N fracture zone and the Mid-Atlantic Ridge [J]. Geochimica et Cosmochimica Acta, 1998, 62(13): 2323-2333. doi: 10.1016/S0016-7037(98)00138-0
[12] McCollom M T. Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa [J]. Journal of Geophysical Research: Planets, 1999, 104(E12): 30729-30742. doi: 10.1029/1999JE001126
[13] Proskurowski G, Lilley M D, Seewald S J, et al. Abiogenic hydrocarbon production at Lost City Hydrothermal Field [J]. Science, 2008, 319(5863): 604-607. doi: 10.1126/science.1151194
[14] Bradley A S, Summons R E. Multiple origins of methane at the Lost City Hydrothermal Field [J]. Earth and Planetary Science Letters, 2010, 297(1-2): 34-41. doi: 10.1016/j.jpgl.2010.05.034
[15] 汪小妹, 曾志刚, 欧阳荷根, 等. 大洋橄榄岩的蛇纹岩石化研究进展评述[J]. 地球科学进展, 2015, 25(6):605-616
WANG Xiaomei, ZENG Zhigang, OUYANG Hegen, et al. Review of progress in serpentinization research of oceanic peridotites [J]. Advances in Earth Science, 2015, 25(6): 605-616.
[16] 黄瑞芳, 孙卫东, 丁兴, 等. 橄榄岩蛇纹石化过程中氢气和烷烃的形成[J]. 岩石学报, 2015, 31(7):1901-1907
HUANG Ruifang, SUN Weidong, DING Xing, et al. Formation of hydrogen gas and alkane during peridotite serpentinization [J]. Acta Petrologica Sinica, 2015, 31(7): 1901-1907.
[17] McCollom T M, Bach W. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks [J]. Geochimica Et Cosmochimica Acta, 2009, 73(3): 856-875. doi: 10.1016/j.gca.2008.10.032
[18] Rajan A, Mienert J, Bünz S, et al. Potential serpentinization, degassing, and gas hydrate formation at a young (< 20 Ma) sedimented ocean crust of the Arctic Ocean ridge system [J]. Journal of Geophysical Research-Solid Earth, 2012, 117(B3): B03102.
[19] Johnson J E, Mienert J, Plaza-Faverola A, et al. Abiotic methane from ultraslow-spreading ridges can charge Arctic gas hydrates [J]. Geology, 2015, 43(5): 371-374. doi: 10.1130/G36440.1
[20] Kelley D S, Karson J A, Früh-Green G L, et al. A serpentinite-hosted ecosystem: The lost city hydrothermal field [J]. Science, 2005, 307(5714): 1428-1434. doi: 10.1126/science.1102556
[21] Ludwig K A, Kelley D S, Butterfield D A, et al. Formation and evolution of carbonate chimneys at the Lost City Hydrothermal Field [J]. Geochimica et Cosmochimica Acta, 2006, 70(14): 3625-3645. doi: 10.1016/j.gca.2006.04.016
[22] Schrenk M O, Brazelton W J, Lang S Q. Serpentinization, carbon, and deep life[M]//Carbon in Earth. Chantilly: Mineralogical Society of America, 2013, 75: 575-606.
[23] Fryer P, Pearce J A, Stokking L B, et al. Proceedings of the ocean drilling program: Initial Reports 125[R]. College Station, TX: Ocean Drilling Program, 1990.
[24] 王先彬, 欧阳自远, 卓胜广, 等. 蛇纹石化作用、非生物成因有机化合物与深部生命[J]. 中国科学: 地球科学, 2014, 57(5):878-887 doi: 10.1007/s11430-014-4821-8
WANG Xianbin, OUYANG Ziyuan, ZHUO Shengguang, et al. Serpentinization, abiogenic organic compounds, and deep life [J]. Science China: Earth Sciences, 2014, 57(5): 878-887. doi: 10.1007/s11430-014-4821-8
[25] Dmitriev L V, Bazylev B A, Silantiev S A, et al. Hydrogen and methane formation with serpentization of mantle hyperbasite of the ocean and oil generation [J]. Russian Journal of Earth Sciences, 2000, 1(6): 511-519. doi: 10.2205/2000ES000030
[26] Lupton J, Butterfield D, Lilley M, et al. Submarine venting of liquid carbon dioxide on a Mariana Arc volcano [J]. Geochemistry, Geophysics, Geosystems, 2006, 7(8): Q08007.
[27] Sun R, Duan Z H. An accurate model to predict the thermodynamic stability of methane hydrate and methane solubility in marine environments [J]. Chemical Geology, 2007, 244(1-2): 248-262. doi: 10.1016/j.chemgeo.2007.06.021
[28] Tishchenko P, Hensen C, Wallmann K, et al. Calculation of the stability and solubility of methane hydrate in seawater [J]. Chemical Geology, 2005, 219(1-4): 37-52. doi: 10.1016/j.chemgeo.2005.02.008
[29] Dickens G R, Quinby-Hunt M S. Methane hydrate stability in seawater [J]. Geophysical Research Letters, 1994, 21(19): 2115-2118. doi: 10.1029/94GL01858
[30] Brown K M, Bangs N L, Froelich P N, et al. The nature, distribution, and origin of gas hydrate in the Chile Triple Junction region [J]. Earth and Planetary Science Letters, 1996, 139(3-4): 471-483. doi: 10.1016/0012-821X(95)00243-6
[31] Fryer P, Wheat C G, Williams T, et al. Proceedings of the ocean internation drilling program: Initial Reports 366[R]. College Station, TX: Ocean Drilling Program, 2018.
[32] Myhre, A M, Thiede J, Firth J V. Proceedings of the ocean internation drilling program: Initial Reports 151[R]. College Station, TX, 1995.
[33] Früh-Green G L, Orcutt B N, Green S L, et al. Proceedings of the ocean drilling program: Initial Reports 357[R]. College Station, TX, 2017.
[34] Fryer P. Serpentinite mud volcanism: observations, processes, and implications[M]//Annual Review of Marine Science. Palo Alto: Annual Reviews, 2012, 4: 345-373.
[35] Wheat C G, Fryer P, Fisher A T, et al. Borehole observations of fluid flow from South Chamorro Seamount, an active serpentinite mud volcano in the Mariana forearc [J]. Earth and Planetary Science Letters, 2008, 267(3-4): 401-409. doi: 10.1016/j.jpgl.2007.11.057
[36] Mottl M J, Wheat C G, Fryer P, et al. Chemistry of springs across the Mariana forearc shows progressive devolatilization of the subducting plate [J]. Geochimica Et Cosmochimica Acta, 2004, 68(23): 4915-4933. doi: 10.1016/j.gca.2004.05.037
[37] Salisbury M H, Shinohara M, Richter C, et al. Proceedings of the ocean drilling program: Initial Reports 195[R]. College Station, TX: Ocean Drilling Program, 2002.
[38] 丁兴, 刘志锋, 黄瑞芳, 等. 大洋俯冲带的水岩作用——蛇纹石化[J]. 工程研究-跨学科视野中的工程, 2016, 8(3):258-268
DING Xing, LIU Zhifeng, HUANG Ruifang, et al. Water-rock interaction in oceanic subduction zone: Serpentinzation [J]. Journal of Engineering Studies, 2016, 8(3): 258-268.
[39] 张振国, 方念乔, 高莲凤, 等. 超慢速扩张洋脊: 海洋地学研究新领域[J]. 海洋地质动态, 2007, 23(4):17-20 doi: 10.3969/j.issn.1009-2722.2007.04.005
ZHANG Zhenguo, FANG Nianqiao, GAO Lianfeng, et al. The ultraslow-spreading ridge: new field of the marine geology [J]. Marine Geology Letters, 2007, 23(4): 17-20. doi: 10.3969/j.issn.1009-2722.2007.04.005
[40] Snow J E, Edmonds H N. Ultraslow-spreading ridges: rapid paradigm changes [J]. Oceanography, 2007, 20(1): 90-101. doi: 10.5670/oceanog.2007.83
[41] Klenke M, Schenke H W. A new bathymetric model for the central Fram Strait [J]. Marine Geophysical Researches, 2002, 23(4): 367-378. doi: 10.1023/A:1025764206736
[42] Westvig I M. Structural and stratigraphic setting and fluid flow features of the svyatogor ridge, a sediment drift south of the Molloy transform[D]. Master Dissertation of UiT The Arctic University of Norway, 2015.
[43] Kelley D S, Karson J A, Blackman D K, et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N [J]. Nature, 2001, 412(6843): 145-149. doi: 10.1038/35084000
[44] Früh-Green G L, Kelley D, Bernasconi M S, et al. 30, 000 years of hydrothermal activity at the Lost City vent field [J]. Science, 2003, 301(5632): 495-498. doi: 10.1126/science.1085582
[45] Lowell R P, Rona P A. Seafloor hydrothermal systems driven by the serpentinization of peridotite [J]. Geophysical Research Letters, 2002, 29(11): 26-1-26-4.
[46] Müller R D, Sdrolias M, Gaina C, et al. Age, spreading rates, and spreading asymmetry of the world's ocean crust [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4): Q04006.
[47] 张继, 李海平, 陈青, 等. 俯冲带研究进展与问题[J]. 地质调查与研究, 2015, 38(1):18-27, 34 doi: 10.3969/j.issn.1672-4135.2015.01.003
ZHANG Ji, LI Haiping, CHEN Qing, et al. Review on the research of subduction zone [J]. Geological Survey and Research, 2015, 38(1): 18-27, 34. doi: 10.3969/j.issn.1672-4135.2015.01.003
[48] 郑永飞, 陈仁旭, 徐峥, 等. 俯冲带中的水迁移[J]. 中国科学: 地球科学, 2016, 59(4):651-681 doi: 10.1007/s11430-015-5258-4
ZHENG Yongfei, CHEN Renxu, XU Zheng, et al. The transport of water in subduction zones [J]. Science China Earth Sciences, 2016, 59(4): 651-681. doi: 10.1007/s11430-015-5258-4
[49] 臧绍先, 宁杰远. 西太平洋俯冲带的研究及其动力学意义[J]. 地球物理学报, 1996, 39(2):188-202 doi: 10.3321/j.issn:0001-5733.1996.02.006
ZANG Shaoxian, NING Jieyuan. Study on the subduction zone in western Pacific and its implication for the geodynamics [J]. Acta Geophysica Sinica, 1996, 39(2): 188-202. doi: 10.3321/j.issn:0001-5733.1996.02.006
[50] Allen D E, Seyfried W E Jr. Serpentinization and heat generation: constraints from Lost City and Rainbow hydrothermal systems [J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1347-1354. doi: 10.1016/j.gca.2003.09.003
[51] Proskurowski G, Liley M D, Kelley D S, et al. Low temperature volatile production at the Lost City Hydrothermal Field, evidence from a hydrogen stable isotope geothermometer [J]. Chemical Geology, 2006, 229(4): 331-343. doi: 10.1016/j.chemgeo.2005.11.005
[52] Wei M, Sandwell D. Estimates of heat flow from Cenozoic seafloor using global depth and age data [J]. Tectonophysics, 2006, 417(3-4): 325-335. doi: 10.1016/j.tecto.2006.02.004
[53] Wallmann K, Pinero E, Burwicz E, et al. The global inventory of methane hydrate in marine sediments: a theoretical approach [J]. Energies, 2012, 5(7): 2449-2498. doi: 10.3390/en5072449
[54] Milkov A V. Global estimates of hydrate-bound gas in marine sediments: how much is really out there? [J]. Earth-Science Reviews, 2004, 66(3-4): 183-197. doi: 10.1016/j.earscirev.2003.11.002
[55] Xu W Y. Modeling dynamic marine gas hydrate systems [J]. American Mineralogist, 2004, 89(8-9): 1271-1279. doi: 10.2138/am-2004-8-916
[56] Chen D F, Su Z, Cathles L M. Types of gas hydrates in marine environments and their thermodynamic characteristics [J]. Terrestrial Atmospheric & Oceanic Sciences, 2006, 17(4): 723-737.
[57] Cao Y C, Chen D F, Cathles L M. A kinetic model for the methane hydrate precipitated from venting gas at cold seep sites at Hydrate Ridge, Cascadia margin, Oregon [J]. Journal of Geophysical Research-Solid Earth, 2013, 118(9): 4669-4681. doi: 10.1002/jgrb.50351
[58] Borowski W S, Paull C K, Ussler W Ⅲ. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate [J]. Geology, 1996, 24(7): 655-658. doi: 10.1130/0091-7613(1996)024<0655:MPWSPI>2.3.CO;2
[59] Bhatnagar G, Chatterjee S, Chapman W G, et al. Analytical theory relating the depth of the sulfate-methane transition to gas hydrate distribution and saturation [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(3): Q03003.
[60] Tréhu A M, Bohrmann G, Rack F R, et al. Proceedings of the ocean drilling program: Initial Reports 204[R]. College Station, TX: Ocean Drilling Program, 2003.
[61] Riedel M, Collett T S, Malone M J, et al. Proceedings of the integrated ocean drilling: Initial Reports 311[R]. College Station, TX: Ocean Drilling Program, 2006.
[62] Egeberg P K, Dickens G R. Thermodynamic and pore water halogen constraints on gas hydrate distribution at ODP Site 997 (Blake Ridge) [J]. Chemical Geology, 1999, 153(1-4): 53-79. doi: 10.1016/S0009-2541(98)00152-1
[63] 曹运诚, 陈多福. 海洋天然气水合物发育顶界的模拟计算[J]. 地球物理学报, 2014, 57(2):618-627 doi: 10.6038/cjg20140225
CAO Yuncheng, CHEN Duofu. Modeling calculation of top occurrence of marine gas hydrates [J]. Chinese Journal of Geophysics, 2014, 57(2): 618-627. doi: 10.6038/cjg20140225
[64] Tréhu A M, Long P E, Torres M E, et al. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: constraints from ODP Leg 204 [J]. Earth and Planetary Science Letters, 2004, 222(3-4): 845-862. doi: 10.1016/j.jpgl.2004.03.035