-
摘要:
太古宙时期岩石圈的主要散热方式是岩浆活动,岩浆活动既为岩石圈提供了新的物质,也为岩石圈变形提供了动力条件。目前已发现残留的太古宙构造变形记录显示,那时"大陆"内部广泛发育与垂向运动过程有关的穹脊构造。但对于这种垂向构造是如何与太古宙岩浆活动联系起来的,目前还不清楚。为了研究岩浆的动力作用与穹脊构造间的关系,基于有限差分数值模拟方法设置了大小为879 km×400 km的二维数值模型,通过设置多岩浆通道条件模拟太古宙岩浆的侵入过程。实验结果显示出岩浆活动弱化了岩石圈并造成岩石圈的强烈变形。其中,岩浆通道的正上方呈现出正地形,并形成TTG穹窿。密集排布的岩浆通道之间呈现负地形,形成绿岩带坳陷。穹窿在演化过程中发生水平扩张,导致绿岩带不断收窄形成“钱袋子”构造样式,二者共同组成穹脊构造。本研究认为将岩浆活动作为调节岩石圈变形的条件符合太古宙地质背景。岩浆通道条件能为穹脊构造的产生提供驱动力,是造成太古宙岩石圈变形的重要因素。
Abstract:Magmatism is the main method for lithospheric cooling in Archean. It not only produces new materials, but also provides power for lithospheric deformation. The records of Archean deformation remained up to present suggest that the dome-and keel-structure related to the vertical movement are widely developed in the interiors of continental cratons at that time. However, it is not clear how the vertical structures work with the Archean magmatic activity. In order to make the study more intuitively, we made a two-dimensional numerical model in size of 879 × 400 km2 based on the finite difference numerical simulation method and then tried to work out the intrusion process by setting magma conditions. The experimental results show that the magma vent array weakens the lithosphere and causes strong deformation of the lithosphere. The TTG domes are formed on the top of the magma vents. There is a negative topography between the magma channels. There is a negative topography, a depression, between the dense magma vents. During the evolution of the dome, it will expand horizontally resulting in the narrowing of the greenstone belt and the appearance of " bag" style. They constitute the dome-and keel-structure. In our study, considering magmatism as a condition of lithosphere deformation is consistent with the facts from the Archean geological background. The magma vent array, as an important factor for lithosphere deformation, provides driving force for the formation of the dome-and-keel structure.
-
Key words:
- magma vent /
- Archean /
- dome-and-keel structure /
- numerical modeling
-
表 1 材料参数设置(据Ranalli and Donald[49])
Table 1. Material properties setting
物质 状态 ρ0/
kg·m−3Cp/
J·kg−1·K−1K a/
W·m−1·K−1Tsolidusb/K Tliquidusb/K Hr/
μ·W·m−3α/
K−1β/
MPa粘滞性流变
参数c塑性性质
sin(φeff)空气 - 1 100 20 - - 0 0 0 A* 0 水 - 1000 3330 20 - - 0 0 0 A* 0 沉积物 固态
熔融2700
25001000 K1 TS1 TL1 2 3 × 10−5 1 × 10−5 B*
G*0.15
0.06上陆壳 固态
熔融2700
25001000 K1 TS1 TL1 2 3 × 10−5 1 × 10−5 B*
G*0.15
0.06下陆壳 固态
熔融3000
25001000 K2 TS2 TL2 0.5 3 × 10−5 1 × 10−5 C*
G*0.15
0.06绿岩带 固态
熔融3300
29001000 K2 TS2 TL2 0.25 3 × 10−5 1 × 10−5 D*
H*0.15
0.06地幔 固态
熔融3300
27001000 K3 - - 0.022 3×10−5 1×10−5 E* 0.6
0.06a. K1 = [0.64+807/(TK + 77)]exp(0.00004P); K2 = [1.18+474/(TK + 77)]exp(0.00004P); K3 = [0.73+1293/(TK+77)]exp(0.00004P)
b. P < 1200 MPa, TS1=889+17900/(P + 54)+20200/(P + 54)2; P >1200 MPa, TS1=831+0.06P, TL1=1262+0.09P
P < 1600 MPa, TS2=973–70400/(P + 354)+778×105/(P + 354)2; P >1600 MPa, TS2=935+0.0035P+0.0000062P2, TL2=1423+0.105P
c. 类型A-H的具体参数详见表2。表 2 流变学参数设置(据Ranalli and Donald[49])
Table 2. Rheological parameter setting
类别 流变性质 E/KJ·mol−1 V/J·MPa−1·mol−1 n AD/MPa−n·s−1 η0a/Pa·s A* 空气/水 0 0 1.0 1.0×10−12 1×1018 B* 湿石英 154 0 2.3 3.2×10−6 1.97×1019 C* An75 238 0 3.2 3.3×10−6 4.80×1024 D* An75 238 0 3.2 3.3×10−4 4.80×1022 E* 无水橄榄岩 532 8 3.5 2.5×104 3.98×1016 F*b 湿橄榄岩 470 8 4.0 2.0×103 5.01×1020 G*b 长英质熔体 0 0 1.0 2.0×10−9 5.00×1014 H 铁镁质熔体 0 0 1.0 1.0×10−7 1.00×1013 a η0表示为有效粘滞系数, 计算公式为:η0 = (1/AD)×106n;
b 熔融的长英质熔体 ,F* 表示熔融的沉积物和地壳。 -
[1] Debaille V, Brandon A D, O’Neill C, et al. Early martian mantle overturn inferred from isotopic composition of nakhlite meteorites [J]. Nature Geoscience, 2009, 2(8): 548-552. doi: 10.1038/ngeo579
[2] Dhuime B, Hawkesworth C J, Cawood P A, et al. A change in the geodynamics of continental growth 3 billion years ago [J]. Science, 2012, 335(6074): 1334-1336. doi: 10.1126/science.1216066
[3] 李三忠, 王光增, 索艳慧, 等. 板块驱动力: 问题本源与本质[J]. 大地构造与成矿学, 2019, 43(4):605-643
LI Sanzhong, WANG Guangzeng, SUO Yanhui, et al. Driving force of plate tectonics: Origin and nature [J]. Geotectonica et Metallogenia, 2019, 43(4): 605-643.
[4] 刘大瞻, 刘跃文. 三道溜河地区太古宙岩浆一构造事件[J]. 吉林地质, 1994, 13(3):46-54
LIU Dazhan, LIU Yuewen. The archean magma tectonic event of the sandaoliuhe area [J]. Jilin Geology, 1994, 13(3): 46-54.
[5] 赵国春, 孙敏, Wilde S A. 华北克拉通基底构造单元特征及早元古代拼合[J]. 中国科学 D辑: 地球科学, 2002, 32(7):538-549
ZHAO Guochun, SUN Min, Wilde S A. Characteristics of Proterozoic tectonic units of the basement of the North China Craton and Proterozoic amalgamation [J]. Science in China Series D: Earth Sciences, 2002, 32(7): 538-549.
[6] 翟明国. 华北克拉通的形成以及早期板块构造[J]. 地质学报, 2012, 86(9):1335-1349 doi: 10.3969/j.issn.0001-5717.2012.09.002
ZHAI Mingguo. Evolution of the North China craton and early Plate Tectonics [J]. Acta Geologica Sinica, 2012, 86(9): 1335-1349. doi: 10.3969/j.issn.0001-5717.2012.09.002
[7] 吴鸣谦, 左梦璐, 张德会, 等. TTG岩套的成因及其形成环境[J]. 地质论评, 2014, 60(3):503-514
WU Mingqian, ZUO Menglu, ZHANG Dehui, et al. Genesis and diagenetic environment of TTG suite [J]. Geological Review, 2014, 60(3): 503-514.
[8] 李三忠, 戴黎明, 张臻, 等. 前寒武纪地球动力学(Ⅳ): 前板块体制[J]. 地学前沿, 2015, 22(6):46-64
LI Sanzhong, DAI Liming, ZHANG Zhen, et al. Precambrian geodynamics (Ⅳ): pre-plate regime [J]. Earth Science Frontiers, 2015, 22(6): 46-64.
[9] 万渝生, 董春艳, 任鹏, 等. 华北克拉通太古宙TTG岩石的时空分布、组成特征及形成演化: 综述[J]. 岩石学报, 2017, 33(5):1405-1419
WAN Yusheng, DONG Chunyan, REN Peng, et al. Spatial and temporal distribution, compositional characteristics and formation and evolution of Archean TTG rocks in the North China Craton: a synthesis [J]. Acta Petrologica Sinica, 2017, 33(5): 1405-1419.
[10] Kaur P, Chaudhri N, Eliyas N. Origin of trondhjemite and albitite at the expense of A-type granite, Aravalli orogen, India: evidence from new metasomatic replacement fronts [J]. Geoscience Frontiers, 2019, 10(5): 1891-1913. doi: 10.1016/j.gsf.2018.09.019
[11] Johnson T, Brown M, VanTongeren J. Sink or swim? The fate of Archean primary crust and the generation of TTG magmas[C]//EGU General Assembly 2013. Vienna, Austria: EGU, 2013: 2112.
[12] Lana C, Tohver E, Cawood P. Quantifying rates of dome-and-keel formation in the Barberton granitoid-greenstone belt, South Africa [J]. Precambrian Research, 2010, 177(1-2): 199-211. doi: 10.1016/j.precamres.2009.12.001
[13] Li S Z, Zhao G C, Santosh M, et al. Paleoproterozoic structural evolution of the southern segment of the Jiao-Liao-Ji Belt, North China Craton [J]. Precambrian Research, 2012, 200-203: 59-73. doi: 10.1016/j.precamres.2012.01.007
[14] Gerya T. Precambrian geodynamics: concepts and models [J]. Gondwana Research, 2014, 25(2): 442-463. doi: 10.1016/j.gr.2012.11.008
[15] 王伟, 翟明国, Santosh M. 鲁西太古宙表壳岩的成因及其对地壳演化的制约[J]. 中国科学: 地球科学, 2016, 59(8):1583-1596 doi: 10.1007/s11430-016-5300-1
WANG Wei, ZHAI Mingguo, Santosh M. The genesis of Archean supracrustal rocks in the western Shandong Province of North China Craton: Constraints on regional crustal evolution [J]. Science China Earth Sciences, 2016, 59(8): 1583-1596. doi: 10.1007/s11430-016-5300-1
[16] 韩宁, 江思宏, 白大明, 等. 西澳大利亚伊尔岗克拉通铁矿床研究进展[J]. 地质通报, 2015, 34(6):1086-1099 doi: 10.3969/j.issn.1671-2552.2015.06.009
HAN Ning, JIANG Sihong, BAI Daming, et al. The progress in the study of the iron ore deposits in Yilgarn Craton, Western Australia [J]. Geological Bulletin of China, 2015, 34(6): 1086-1099. doi: 10.3969/j.issn.1671-2552.2015.06.009
[17] 彭俊, 袁杨森, 司建涛, 等. 坦桑尼亚维多利亚湖绿岩带变质火山岩地球化学特征及成岩机制[J]. 矿场勘查, 2018, 9(3):485-494
PENG Jun, YUAN Yangsen, SI Jiantao, et al. Geochemical characteristics and petrogenesis of the metavolcanics rocks in Victoria Lake greenstone belt, Tanzania [J]. Mineral Exploration, 2018, 9(3): 485-494.
[18] 翟明国. 华北克拉通构造演化[J]. 地质力学学报, 2019, 25(5):722-725 doi: 10.12090/j.issn.1006-6616.2019.25.05.063
ZHAI Mingguo. Tectonic evolution of the North China Craton [J]. Journal of Geomechanics, 2019, 25(5): 722-725. doi: 10.12090/j.issn.1006-6616.2019.25.05.063
[19] 张连昌, 翟明国, 万渝生, 等. 华北克拉通前寒武纪BIF铁矿研究: 进展与问题[J]. 岩石学报, 2012, 28(11):3431-3445
ZHANG Lianchang, ZHAI Mingguo, WAN Yusheng, et al. Study of the Precambrian BIF-iron deposits in the North China Craton: progresses and questions [J]. Acta Petrologica Sinica, 2012, 28(11): 3431-3445.
[20] 南景博, 黄华, 王长乐, 等. 内蒙古固阳绿岩带条带状铁建造地球化学特征与沉积环境讨论[J]. 中国地质, 2017, 44(2):331-345
NAN Jingbo, HUANG Hua, WANG Changle, et al. Geochemistry and depositional setting of Banded Iron Formations in Guyang greenstone belt, Inner Mongolia [J]. Geology in China, 2017, 44(2): 331-345.
[21] 彭自栋, 张连昌, 王长乐, 等. 新太古代清原绿岩带下甸子BIF铁矿地质特征及含黄铁矿条带BIF的成因探讨[J]. 岩石学报, 2018, 34(2):398-426
PENG Zidong, ZHANG Lianchang, WANG Changle, et al. Geological features and genesis of the Neoarchean pyritebearing Xiadianzi BIF, Qingyuan greenstone belt [J]. Acta Petrologica Sinica, 2018, 34(2): 398-426.
[22] 张连昌, 彭自栋, 翟明国, 等. 华北克拉通北缘新太古代清原绿岩带BIF与VMS共生矿床的构造背景及成因联系[J]. 地球科学, 2020, 45(1):1-16
ZHANG Lianchang, PENG Zidong, ZHAI Mingguo, et al. Tectonic setting and genetic relationship between BIF and VMS-in the Qingyuan Neoarchean greenstone belt, Northern North China Craton [J]. Earth Science, 2020, 45(1): 1-16.
[23] Joly A, Miller J, McCuaig T C. Archean polyphase deformation in the Lake Johnston Greenstone Belt area: implications for the understanding of ore systems of the Yilgarn Craton [J]. Precambrian Research, 2010, 177(1-2): 181-198. doi: 10.1016/j.precamres.2009.11.010
[24] 罗迪柯, 陈靖, 姚仲友, 等. 南美洲圭亚那地盾北部绿岩带地质特征、典型金矿床及金成矿作用[J]. 地学通报, 2017, 36(12):2197-2207
LUO Dike, CHEN Jing, YAO Zhongyou, et al. Geological features of greenstone belt, typical gold deposits and gold mineralization in northern Guiana shield, South America [J]. Geological Bulletin of China, 2017, 36(12): 2197-2207.
[25] 孙武国, 廉涛, 刘冰. 中非共和国Bambari绿岩带地质特征及找矿意义[J]. 地质与资源, 2016, 25(2):208-212 doi: 10.3969/j.issn.1671-1947.2016.02.021
SUN Wuguo, LIAN Tao, LIU Bing. Geological characteristics and prospecting significance of the Bambari greenstone belt in the Central African Republic [J]. Geology and Resources, 2016, 25(2): 208-212. doi: 10.3969/j.issn.1671-1947.2016.02.021
[26] 王建光, 彭俊, 袁杨森, 等. 坦桑尼亚西北部苏库马绿岩带含金石英脉成矿特征[J]. 世界地质, 2016, 35(4):982-992 doi: 10.3969/j.issn.1004-5589.2016.04.007
WANG Jianguang, PENG Jun, YUAN Yangsen, et al. Mineralization characteristics of gold-bearing quartz veins in Sukumaland greenstone belt of northwestern Tanzania [J]. Global Geology, 2016, 35(4): 982-992. doi: 10.3969/j.issn.1004-5589.2016.04.007
[27] 张德成. 坦桑尼亚绿岩带型金矿[J]. 华北国土资源, 2016(3):60-61 doi: 10.3969/j.issn.1672-7487.2016.03.029
ZHANG Decheng. Greenstone belt type gold deposit in Tanzania [J]. Huabei Land and Resources, 2016(3): 60-61. doi: 10.3969/j.issn.1672-7487.2016.03.029
[28] 张克川, 义爱文, 杨继兵, 等. 坦桑尼亚芒果金矿成矿地质特征及金赋存状态研究[J]. 矿产勘查, 2018, 9(4):761-765 doi: 10.3969/j.issn.1674-7801.2018.04.039
ZHANG Kechuan, YI Aiwen, YANG Jibing, et al. Study on geological characteristics and gold occurrence of Manangu gold mine in Tanzania [J]. Mineral Exploration, 2018, 9(4): 761-765. doi: 10.3969/j.issn.1674-7801.2018.04.039
[29] 李俊生, 白德胜, 卫建征, 等. 坦桑尼亚马拉绿岩带金矿床地质特征[J]. 矿产勘查, 2018, 9(5):977-984 doi: 10.3969/j.issn.1674-7801.2018.05.023
LI Junsheng, BAI Desheng, WEI Jianzheng, et al. Characteristics of gold deposits in Mara greenstone belt, Tanzania [J]. Mineral Exploration, 2018, 9(5): 977-984. doi: 10.3969/j.issn.1674-7801.2018.05.023
[30] 宋建潮, 王恩德, 贾三石, 等. 辽北-吉南地区太古宙矿产形成特点分析[J]. 地质调查与研究, 2008, 31(2):125-129 doi: 10.3969/j.issn.1672-4135.2008.02.007
SONG Jianchao, WANG Ende, JIA Sanshi, et al. Archean characteristics of mineral formation in the region of Northern Liaoning Province and Southern Jilin Province [J]. Geological Survey and Research, 2008, 31(2): 125-129. doi: 10.3969/j.issn.1672-4135.2008.02.007
[31] Moore W B, Webb A A G. Heat-pipe earth [J]. Nature, 2013, 501(7468): 501-505. doi: 10.1038/nature12473
[32] Moore W B, Simon J I, Webb A A G. Heat-pipe planets [J]. Earth and Planetary Science Letters, 2017, 474: 13-19. doi: 10.1016/j.jpgl.2017.06.015
[33] Henson P A, Blewett R S, Roy I G, et al. 4D architecture and tectonic evolution of the Laverton region, eastern Yilgarn Craton, Western Australia [J]. Precambrian Research, 2010, 183(2): 338-355. doi: 10.1016/j.precamres.2010.08.003
[34] Thébaud N, Rey P F. Archean gravity-driven tectonics on hot and flooded continents: controls on long-lived mineralised hydrothermal systems away from continental margins [J]. Precambrian Research, 2013, 229: 93-104. doi: 10.1016/j.precamres.2012.03.001
[35] Lin S F, Parks J, Heaman L M, et al. Diapirism and sagduction as a mechanism for deposition and burial of "Timiskaming-type" sedimentary sequences, Superior Province: evidence from detrital zircon geochronology and implications for the Borden Lake conglomerate in the exposed middle to lower crust in the Kapuskasing uplift [J]. Precambrian Research, 2013, 238: 148-157. doi: 10.1016/j.precamres.2013.09.012
[36] Fischer R, Gerya T. Early earth plume-lid tectonics: a high-resolution 3D numerical modelling approach [J]. Journal of Geodynamics, 2016, 100: 198-214. doi: 10.1016/j.jog.2016.03.004
[37] Sizova E, Gerya T, Brown M, et al. What drives metamorphism in early Archean greenstone belts? Insights from numerical modeling [J]. Tectonophysics, 2018, 746: 587-601. doi: 10.1016/j.tecto.2017.07.020
[38] Sizova E, Gerya T, Stüwe K, et al. Generation of felsic crust in the Archean: a geodynamic modeling perspective [J]. Precambrian Research, 2015, 271: 198-224. doi: 10.1016/j.precamres.2015.10.005
[39] Gerya T V, Yuen D A. Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties [J]. Physics of the Earth and Planetary Interiors, 2003, 140(4): 293-318. doi: 10.1016/j.pepi.2003.09.006
[40] Li Z H, Xu Z Q, Gerya T, et al. Collision of continental corner from 3-D numerical modeling [J]. Earth and Planetary Science Letters, 2013, 380: 98-111. doi: 10.1016/j.jpgl.2013.08.034
[41] Liao J, Gerya T. Influence of lithospheric mantle stratification on craton extension: insight from two-dimensional thermo-mechanical modeling [J]. Tectonophysics, 2014, 631: 50-64. doi: 10.1016/j.tecto.2014.01.020
[42] Li Z H. A review on the numerical geodynamic modeling of continental subduction, collision and exhumation [J]. Science China Earth Sciences, 2014, 57(1): 47-69. doi: 10.1007/s11430-013-4696-0
[43] 刘泽, 戴黎明, 李三忠, 等. 东海陆架盆地南部中生代成盆过程的数值模拟[J]. 海洋地质与第四纪地质, 2017, 37(4):167-180
LIU Ze, DAI Liming, LI Sanzhong, et al. Numerical simulation of mesozoic tectonic processes in the southern part of East China Sea continental shelf basin [J]. Marine Geology & Quaternary Geology, 2017, 37(4): 167-180.
[44] Huangfu P, Li Z H, Gerya T, et al. Multi-terrane structure controls the contrasting lithospheric evolution beneath the western and central–eastern Tibetan plateau [J]. Nature Communications, 2018, 9(1): 3780. doi: 10.1038/s41467-018-06233-x
[45] Dai L M, Li S Z, Li Z H, et al. Dynamics of exhumation and deformation of HP-UHP orogens in double subduction-collision systems: numerical modeling and implications for the Western Dabie Orogen [J]. Earth-Science Reviews, 2018, 182: 68-84. doi: 10.1016/j.earscirev.2018.05.005
[46] 马芳芳, 楼达, 戴黎明, 等. 俯冲板片熔融柱的数值模拟: 上覆板块破坏及动力地形效应[J]. 海洋地质与第四纪地质, 2019, 39(5):186-196
MA Fangfang, LOU Da, DAI Liming, et al. Numerical simulation of subduction-induced molten plume: Destruction of overriding plate and its dynamic topographic responses [J]. Marine Geology & Quaternary Geology, 2019, 39(5): 186-196.
[47] 陶建丽, 楼达, 戴黎明, 等. 中国东部大陆边缘中生代晚期增生过程的数值模拟: 以那丹哈达为例[J]. 海洋地质与第四纪地质, 2019, 39(5):174-185
TAO Jianli, LOU Da, DAI Liming, et al. Numerical simulation of Late Mesozoic accretion process along the continental margin of East China: A case study of the Nadanhada Terrane [J]. Marine Geology & Quaternary Geology, 2019, 39(5): 174-185.
[48] 刘昕悦, 李伟民, 刘永江, 等. 辽东鞍山地区太古代构造样式及其数值模拟[J]. 岩石学报, 2019, 35(4):1071-1084
LIU Xinyue, LI Weimin, LIU Yongjiang, et al. Archean tectonic pattern and its numerical simulation in Anshan area, eastern Liaoning Province [J]. Acta Petrologica Sinica, 2019, 35(4): 1071-1084.
[49] Ranalli G, Murphy D C. Rheological stratification of the lithosphere [J]. Tectonophysics, 1987, 132(4): 281-295. doi: 10.1016/0040-1951(87)90348-9
[50] Bédard J H. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle [J]. Geochimica et Cosmochimica Acta, 2006, 70(5): 1188-1214. doi: 10.1016/j.gca.2005.11.008
[51] Taylor J, Stevens G, Armstrong R, et al. Granulite facies anatexis in the Ancient Gneiss Complex, Swaziland, at 2.73 Ga: mid-crustal metamorphic evidence for mantle heating of the Kaapvaal craton during Ventersdorp magmatism [J]. Precambrian Research, 2010, 177(1-2): 88-102. doi: 10.1016/j.precamres.2009.11.005
[52] Smithies R H, Lu Y J, Johnson T E, et al. No evidence for high-pressure melting of Earth’s crust in the Archean [J]. Nature Communications, 2019, 10(1): 5559. doi: 10.1038/s41467-019-13547-x
[53] Manikyamba C, Kerrich R, Polat A, et al. Arc picrite-potassic adakitic-shoshonitic volcanic association of the Neoarchean Sigegudda greenstone terrane, western Dharwar craton: transition from arc wedge to lithosphere melting [J]. Precambrian Research, 2012, 212-213: 207-224. doi: 10.1016/j.precamres.2012.05.006
[54] Liu F, Guo J H, Peng P, et al. Zircon U-Pb ages and geochemistry of the Huai’an TTG gneisses terrane: petrogenesis and implications for ~2.5 Ga crustal growth in the North China Craton [J]. Precambrian Research, 2012, 212-213: 225-244. doi: 10.1016/j.precamres.2012.06.006
[55] Wang Y F, Li X H, Jin W, et al. Eoarchean ultra-depleted mantle domains inferred from ca. 3.81 Ga Anshan trondhjemitic gneisses, North China Craton [J]. Precambrian Research, 2015, 263: 88-107. doi: 10.1016/j.precamres.2015.03.005
[56] Gao L, Liu S W, Hu Y L, et al. Late Neoarchean geodynamic evolution: evidence from the metavolcanic rocks of the Western Shandong Terrane, North China Craton [J]. Gondwana Research, 2020, 80: 303-320. doi: 10.1016/j.gr.2019.10.017
[57] Van Kranendonk M J, Collins W J, Hickman A, et al. Critical tests of vertical vs. horizontal tectonic models for the Archaean East Pilbara Granite-Greenstone Terrane, Pilbara Craton, Western Australia [J]. Precambrian Research, 2004, 131(3-4): 173-211. doi: 10.1016/j.precamres.2003.12.015
[58] Bouhallier H, Chardon D, Choukroune P. Strain patterns in Archaean dome-and-basin structures: the Dharwar craton (Karnataka, South India) [J]. Earth and Planetary Science Letters, 1995, 135(1-4): 57-75. doi: 10.1016/0012-821X(95)00144-2