Carbon cycle and deep carbon storage during subduction and magamatic processes
-
摘要:
地球内部可能存储了地球上大部分的碳,地球的整个地质演化历史都伴随着碳循环。岩浆过程是重要的CO2释放途径,引起地表碳的增加。板块俯冲起动之后,俯冲带成为地表碳重返地球内部的基本途径。板块俯冲和岩浆过程构成了地表过程和地球内部之间的碳循环,在地质历史时期影响着地表的碳总量,对于宜居地球环境和一些重要矿产资源的形成具有重大意义。然而,相对地表过程的碳循环而言,国际上对深部碳循环的研究程度和取得的认识远远不足。对于地球深部碳的富集机制、赋存部位,以及碳在地球内部各圈层之间的交换规律,还存在很大争议。本文对与深部碳循环密切相关的深部碳储库、岩浆中的碳组成及其对岩浆成因的影响,以及板块俯冲过程中碳行为进行了总结。结果表明,无论是洋中脊玄武岩或洋岛玄武岩,其源区CO2组成都存在高度不均一性;与地幔柱有关的深源板内火山岩相对洋中脊具有异常高的CO2组成,显示深部地幔比上地幔或软流圈更富集碳。地球的地幔转换带(410~660 km)、大陆岩石圈,甚至下地幔可能是重要的碳储库。碳酸岩熔体与岩石圈橄榄岩存在化学不平衡,长期的碳酸岩熔体交代作用可能导致大陆岩石圈是个重要碳储库;地幔转换带的高压还原环境可能使得来自上涌地幔或俯冲板片中的碳以金刚石形式存储。地幔转换带或更深的碳在上涌减压过程中通过氧化还原熔融可以转化为CO2,对地幔初始熔融和板内火山岩的成因(尤其是碱性火山岩)可能具有至关重要的作用。综合认为,导致地球内部富集碳的地质作用最可能是长期板块俯冲,但是目前国内外对与板块俯冲过程相关的碳行为和碳通量估算还存在很大的不足,未来有必要针对岩浆过程的CO2活动行为、俯冲板块中碳的转化行为以及脱碳规律重点开展研究。
Abstract:Most of the Earth’s carbon is stored in the deep interior of the Earth, and CO2 plays a key role over the geologic history. Magmatism is a process, which releases CO2 and increases the carbon on the Earth’s surface. Plate subduction is a major process that brings Earth’s surface carbon back to its interior since its initiation globally. Therefore, plate subduction and magmatic processes constitute a deep carbon cycle between the Earth’s surface and interior. The cycle will affect the total amount of carbon of the Earth’s surface and makes contributions to the formation to the livable Earth environment and some important mineral resources. However, in contrast to the carbon cycle in the Earth’s surface system, the knowledge on deep carbon cycle is lacking. There are still controversies about the enrichment mechanism of the deep carbon, the location of its occurrence, and the exchanges of carbon among the solid Earth’s spheres. In this study, we made a thorough review on the deep carbon reservoirs, the carbon composition of magmas and its influences on the genesis of magmas, as well as the geochemical behavior of the carbon during plate subduction. It is recognized that, for the mid-ocean ridge basalts and the ocean island basalts, the CO2 compositions of their mantle sources are highly heterogeneous. Compared to the mid-ocean ridge basalts, the deeper-sourced ocean island basalts have relatively higher concentrations of carbon, indicating that the deep mantle is more enriched in carbon than the shallow upper mantle. The continental lithosphere mantle, transition zone, and even lower mantle may be important reservoirs of carbon. There is a chemical disequilibrium between the carbonated melts and the lithospheric peridotites. The continental lithosphere mantle may be an important carbon reservoir because of the long-term metasomatism of carbonated melts, and the high pressure and strong reducing environment in the mantle transition zone may cause the carbon from the upwelling mantle or subducted slab to be stored in a form of diamond. Carbon in the mantle transition zone or the even deeper sources may be converted to CO2 by redox melting during mantle upwelling and decompression, which plays a key role in the initiation of mantle melting and genesis of the intraplate volcanic rocks (especially for alkali volcanic rocks). It is concluded that the long-term plate subduction in the Earth’s geologic history is most likely the reason that has caused enrichment of carbon in the deep Earth. However, the geochemical behaviors of carbon and the carbon fluxes estimation related to plate subduction remains a subject of debate. In the future study, it is required to focus more on the CO2 activities in the magmatic processes, and the geochemical behaviors (i.e., decarbonation) of carbon in the subducting slab.
-
Key words:
- magma /
- mantle /
- carbon storage /
- diamond /
- carbon cycle /
- plate subduction
-
图 3 板块俯冲导致的碳循环通量示意图(改编自文献[2])
Figure 3.
-
[1] Sleep N H, Zahnle K. Carbon dioxide cycling and implications for climate on ancient Earth [J]. Journal of Geophysical Research: Planets, 2001, 106(E1): 1373-1399. doi: 10.1029/2000JE001247
[2] Kelemen P B, Manning C E. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(30): E3997-E4006. doi: 10.1073/pnas.1507889112
[3] Van Der Meer D G, Zeebe R E, Van Hinsbergen D J J, et al. Plate tectonic controls on atmospheric CO2 levels since the Triassic [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(12): 4380-4385. doi: 10.1073/pnas.1315657111
[4] Dasgupta R, Walker D. Carbon solubility in core melts in a shallow magma ocean environment and distribution of carbon between the Earth’s core and the mantle [J]. Geochimica et Cosmochimica Acta, 2008, 72(18): 4627-4641. doi: 10.1016/j.gca.2008.06.023
[5] Marty B, Tolstikhin I N. CO2 fluxes from mid-ocean ridges, arcs and plumes [J]. Chemical Geology, 1998, 145(3-4): 233-248. doi: 10.1016/S0009-2541(97)00145-9
[6] Dasgupta R, Hirschmann M M, Smith N D. Water follows carbon: CO2 incites deep silicate melting and dehydration beneath mid-ocean ridges [J]. Geology, 2007, 35(2): 135-138. doi: 10.1130/G22856A.1
[7] Dalou C, Koga K T, Hammouda T, et al. Trace element partitioning between carbonatitic melts and mantle transition zone minerals: implications for the source of carbonatites [J]. Geochimica et Cosmochimica Acta, 2009, 73(1): 239-255. doi: 10.1016/j.gca.2008.09.020
[8] Kono Y, Kenney-Benson C, Hummer D, et al. Ultralow viscosity of carbonate melts at high pressures [J]. Nature Communications, 2014, 5(1): 5091. doi: 10.1038/ncomms6091
[9] Dasgupta R, Hirschmann M M. The deep carbon cycle and melting in Earth's interior [J]. Earth and Planetary Science Letters, 2010, 298(1-2): 1-13. doi: 10.1016/j.jpgl.2010.06.039
[10] Giuliani A, Kamenetsky V S, Phillips D, et al. Nature of alkali-carbonate fluids in the sub-continental lithospheric mantle [J]. Geology, 2012, 40(11): 967-970. doi: 10.1130/G33221.1
[11] Hoernle K, Tilton G, Le Bas M J, et al. Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate [J]. Contributions to Mineralogy and Petrology, 2002, 142(5): 520-542. doi: 10.1007/s004100100308
[12] 宋文磊, 许成, 刘琼, 等. 火成碳酸岩的实验岩石学研究及对地球深部碳循环的意义[J]. 地质论评, 2012, 58(4):726-744 doi: 10.3969/j.issn.0371-5736.2012.04.014
SONG Wenlei, XU Cheng, LIU Qiong, et al. Experimental petrological study of carbonatite and its significances on the earth deep carbon cycle [J]. Geological Review, 2012, 58(4): 726-744. doi: 10.3969/j.issn.0371-5736.2012.04.014
[13] Dasgupta R, Hirschmann M M, Smith N D. Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of Alkalic Ocean Island basalts [J]. Journal of Petrology, 2007, 48(11): 2093-2124. doi: 10.1093/petrology/egm053
[14] Zhang G L, Chen L H, Jackson M G, et al. Evolution of carbonated melt to alkali basalt in the South China Sea [J]. Nature Geoscience, 2017, 10(3): 229-235. doi: 10.1038/ngeo2877
[15] Liu S A, Wang Z Z, Li S G, et al. Zinc isotope evidence for a large-scale carbonated mantle beneath eastern China [J]. Earth and Planetary Science Letters, 2016, 444: 169-178. doi: 10.1016/j.jpgl.2016.03.051
[16] Li S G, Yang W, Ke S, et al. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China [J]. National Science Review, 2017, 4(1): 111-120.
[17] Thomson A R, Walter M J, Kohn S C, et al. Slab melting as a barrier to deep carbon subduction [J]. Nature, 2016, 529(7584): 76-79. doi: 10.1038/nature16174
[18] Foley S F, Fischer T P. An essential role for continental rifts and lithosphere in the deep carbon cycle [J]. Nature Geoscience, 2017, 10(12): 897-902. doi: 10.1038/s41561-017-0002-7
[19] Michael P J, Graham D W. The behavior and concentration of CO2 in the suboceanic mantle: inferences from undegassed ocean ridge and ocean island basalts [J]. Lithos, 2015, 236-237: 338-351. doi: 10.1016/j.lithos.2015.08.020
[20] Le Voyer M, Kelley K A, Cottrell E, et al. Heterogeneity in mantle carbon content from CO2-undersaturated basalts [J]. Nature Communications, 2017, 8(1): 14062. doi: 10.1038/ncomms14062
[21] Miller W G R, Maclennan J, Shorttle O, et al. Estimating the carbon content of the deep mantle with Icelandic melt inclusions [J]. Earth and Planetary Science Letters, 2019, 523: 115699. doi: 10.1016/j.jpgl.2019.07.002
[22] Cartigny P, Pineau F, Aubaud C, et al. Towards a consistent mantle carbon flux estimate: Insights from volatile systematics (H2O/Ce, δD, CO2/Nb) in the North Atlantic mantle (14°N and 34°N) [J]. Earth and Planetary Science Letters, 2008, 265(3-4): 672-685. doi: 10.1016/j.jpgl.2007.11.011
[23] Hauri E H, Maclennan J, McKenzie D, et al. CO2 content beneath northern Iceland and the variability of mantle carbon [J]. Geology, 2017, 46(1): 55-58.
[24] Helo C, Longpré M A, Shimizu N, et al. Explosive eruptions at mid-ocean ridges driven by CO2-rich magmas [J]. Nature Geoscience, 2011, 4(4): 260-263. doi: 10.1038/ngeo1104
[25] Koleszar A M, Saal A E, Hauri E H, et al. The volatile contents of the Galapagos plume; evidence for H2O and F open system behavior in melt inclusions [J]. Earth and Planetary Science Letters, 2009, 287(3-4): 442-452. doi: 10.1016/j.jpgl.2009.08.029
[26] Anderson K R, Poland M P. Abundant carbon in the mantle beneath Hawaii [J]. Nature Geoscience, 2017, 10(9): 704-708. doi: 10.1038/ngeo3007
[27] Wanless V D, Shaw A M. Lower crustal crystallization and melt evolution at mid-ocean ridges [J]. Nature Geoscience, 2012, 5(9): 651-655. doi: 10.1038/ngeo1552
[28] Shaw A M, Behn M D, Humphris S E, et al. Deep pooling of low degree melts and volatile fluxes at the 85°E segment of the Gakkel Ridge: evidence from olivine-hosted melt inclusions and glasses [J]. Earth and Planetary Science Letters, 2010, 289(3-4): 311-322. doi: 10.1016/j.jpgl.2009.11.018
[29] Wanless V D, Shaw A M, Behn M D, et al. Magmatic plumbing at Lucky Strike volcano based on olivine‐hosted melt inclusion compositions [J]. Geochemistry, Geophysics, Geosystems, 2015, 16(1): 126-147. doi: 10.1002/2014GC005517
[30] Tucker J M, Hauri E H, Pietruszka A J, et al. A high carbon content of the Hawaiian mantle from olivine-hosted melt inclusions [J]. Geochimica et Cosmochimica Acta, 2019, 254: 156-172. doi: 10.1016/j.gca.2019.04.001
[31] Métrich N, Zanon V, Créon L, et al. Is the ‘Azores hotspot’ a wetspot? Insights from the geochemistry of fluid and melt inclusions in olivine of Pico basalts [J]. Journal of Petrology, 2014, 55(2): 377-393. doi: 10.1093/petrology/egt071
[32] Huang J L, Zhao D P. High‐resolution mantle tomography of China and surrounding regions [J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B9): B09305.
[33] Zhao D P, Tian Y, Lei J S, et al. Seismic image and origin of the Changbai intraplate volcano in East Asia: role of big mantle wedge above the stagnant Pacific slab [J]. Physics of the Earth and Planetary Interiors, 2009, 173(3-4): 197-206. doi: 10.1016/j.pepi.2008.11.009
[34] Rohrbach A, Schmidt M W. Redox freezing and melting in the Earth’s deep mantle resulting from carbon–iron redox coupling [J]. Nature, 2011, 472(7342): 209-212. doi: 10.1038/nature09899
[35] Sun W D, Hawkesworth C J, Yao C, et al. Carbonated mantle domains at the base of the Earth's transition zone [J]. Chemical Geology, 2018, 478: 69-75. doi: 10.1016/j.chemgeo.2017.08.001
[36] Zeng G, Chen L H, Xu X S, et al. Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China [J]. Chemical Geology, 2010, 273(1-2): 35-45. doi: 10.1016/j.chemgeo.2010.02.009
[37] Ray J S, Pande K, Bhutani R, et al. Age and geochemistry of the Newania dolomite carbonatites, India: implications for the source of primary carbonatite magma [J]. Contributions to Mineralogy and Petrology, 2013, 166(6): 1613-1632. doi: 10.1007/s00410-013-0945-7
[38] Dalton J A, Wood B J. The compositions of primary carbonate melts and their evolution through wallrock reaction in the mantle [J]. Earth and Planetary Science Letters, 1993, 119(4): 511-525. doi: 10.1016/0012-821X(93)90059-I
[39] Russell J K, Porritt L A, Lavallée Y, et al. Kimberlite ascent by assimilation-fuelled buoyancy [J]. Nature, 2012, 481(7381): 352-356. doi: 10.1038/nature10740
[40] Lee H, Muirhead J D, Fischer T P, et al. Massive and prolonged deep carbon emissions associated with continental rifting [J]. Nature Geoscience, 2016, 9(2): 145-149. doi: 10.1038/ngeo2622
[41] Stachel T, Luth R W. Diamond formation—Where, when and how? [J]. Lithos, 2015, 220-223: 200-220. doi: 10.1016/j.lithos.2015.01.028
[42] Eggler D H, Baker D R. Reduced volatiles in the system C–O–H: implications to mantle melting, fluid formation, and diamond genesis[M]//Akimoto S, Manghnani M H. High-Pressure Research in Geophysics[M]. Tokyo: Center for Academic Publications, 1982: 237-250.
[43] Luth R W. Diamonds, eclogites, and the oxidation state of the Earth's mantle [J]. Science, 1993, 261(5117): 66-68. doi: 10.1126/science.261.5117.66
[44] Dorfman S M, Badro J, Nabiei F, et al. Carbonate stability in the reduced lower mantle [J]. Earth and Planetary Science Letters, 2018, 489: 84-91. doi: 10.1016/j.jpgl.2018.02.035
[45] Raffone N, Chazot G, Pin C, et al. Metasomatism in the lithospheric mantle beneath Middle Atlas (Morocco) and the origin of Fe-and Mg-rich wehrlites [J]. Journal of Petrology, 2009, 50(2): 197-249. doi: 10.1093/petrology/egn069
[46] Weidendorfer D, Schmidt M W, Mattsson H B. Fractional crystallization of Si-undersaturated alkaline magmas leading to unmixing of carbonatites on Brava Island (Cape Verde) and a general model of carbonatite genesis in alkaline magma suites [J]. Contributions to Mineralogy and Petrology, 2016, 171(5): 43. doi: 10.1007/s00410-016-1249-5
[47] Clague D A, Dalrymple G B. Age and petrology of alkalic postshield and rejuvenated-stage lava from Kauai, Hawaii [J]. Contributions to Mineralogy and Petrology, 1988, 99(2): 202-218. doi: 10.1007/BF00371461
[48] Phillips E H, Sims K W W, Sherrod D R, et al. Isotopic constraints on the genesis and evolution of basanitic lavas at Haleakala, Island of Maui, Hawaii [J]. Geochimica et Cosmochimica Acta, 2016, 195: 201-225. doi: 10.1016/j.gca.2016.08.017
[49] Jackson M G, Price A A, Blichert-Toft J, et al. Geochemistry of lavas from the Caroline hotspot, Micronesia: evidence for primitive and recycled components in the mantle sources of lavas with moderately elevated 3He/4He [J]. Chemical Geology, 2017, 455: 385-400. doi: 10.1016/j.chemgeo.2016.10.038
[50] Andersen T, Neumann E R. Fluid inclusions in mantle xenoliths [J]. Lithos, 2001, 55(1-4): 301-320. doi: 10.1016/S0024-4937(00)00049-9
[51] Neumann E R, Wulff-Pedersen E, Pearson N J, et al. Mantle xenoliths from Tenerife (Canary Islands): evidence for reactions between mantle peridotites and silicic carbonatite melts inducing Ca metasomatism [J]. Journal of Petrology, 2002, 43(5): 825-857. doi: 10.1093/petrology/43.5.825
[52] Sobolev A V, Hofmann A W, Kuzmin D V, et al. The amount of recycled crust in sources of mantle-derived melts [J]. Science, 2007, 316(5823): 412-417. doi: 10.1126/science.1138113
[53] Hofmann A W, White W M. Mantle plumes from ancient oceanic crust [J]. Earth and Planetary Science Letters, 1982, 57(2): 421-436. doi: 10.1016/0012-821X(82)90161-3
[54] Zhang G L, Smith‐Duque C. Seafloor basalt alteration and chemical change in the ultra thinly sedimented South Pacific [J]. Geochemistry, Geophysics, Geosystems, 2014, 15(7): 3066-3080. doi: 10.1002/2013GC005141
[55] Alt J C, Teagle D A H. The uptake of carbon during alteration of ocean crust [J]. Geochimica et Cosmochimica Acta, 1999, 63(10): 1527-1535. doi: 10.1016/S0016-7037(99)00123-4
[56] Kawamoto T, Yoshikawa M, Kumagai Y, et al. Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(24): 9663-9668. doi: 10.1073/pnas.1302040110
[57] Gorman P J, Kerrick D M, Connolly J A D. Modeling open system metamorphic decarbonation of subducting slabs [J]. Geochemistry, Geophysics, Geosystems, 2006, 7(4): Q04007.
[58] Matsumoto R, Iijima A. Origin and diagenetic evolution of Ca–Mg–Fe carbonates in some coalfields of Japan [J]. Sedimentology, 1981, 28(2): 239-259. doi: 10.1111/j.1365-3091.1981.tb01678.x
[59] Pedersen T F, Price N B. The geochemistry of manganese carbonate in Panama Basin sediments [J]. Geochimica et Cosmochimica Acta, 1982, 46(1): 59-68. doi: 10.1016/0016-7037(82)90290-3
[60] Galvez M E, Beyssac O, Martinez I, et al. Graphite formation by carbonate reduction during subduction [J]. Nature Geoscience, 2013, 6(6): 473-477. doi: 10.1038/ngeo1827
[61] Dasgupta R. Ingassing, storage, and outgassing of terrestrial carbon through geologic time [J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1): 183-229. doi: 10.2138/rmg.2013.75.7