西沙孤立碳酸盐台地的地震层序及演化模式—以永乐环礁为例

李学林, 张汉羽, 刘刚, 韩孝辉, 秦永鹏, 吴时国. 西沙孤立碳酸盐台地的地震层序及演化模式—以永乐环礁为例[J]. 海洋地质与第四纪地质, 2020, 40(5): 87-96. doi: 10.16562/j.cnki.0256-1492.2019111901
引用本文: 李学林, 张汉羽, 刘刚, 韩孝辉, 秦永鹏, 吴时国. 西沙孤立碳酸盐台地的地震层序及演化模式—以永乐环礁为例[J]. 海洋地质与第四纪地质, 2020, 40(5): 87-96. doi: 10.16562/j.cnki.0256-1492.2019111901
LI Xuelin, ZHANG Hanyu, LIU Gang, HAN Xiaohui, QIN Yongpeng, WU Shiguo. Seismic sequence and evolution model of isolated carbonate platform—A case from Yongle Atoll, Xisha Islands[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 87-96. doi: 10.16562/j.cnki.0256-1492.2019111901
Citation: LI Xuelin, ZHANG Hanyu, LIU Gang, HAN Xiaohui, QIN Yongpeng, WU Shiguo. Seismic sequence and evolution model of isolated carbonate platform—A case from Yongle Atoll, Xisha Islands[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 87-96. doi: 10.16562/j.cnki.0256-1492.2019111901

西沙孤立碳酸盐台地的地震层序及演化模式—以永乐环礁为例

  • 基金项目: NSFC-广东联合基金重点基金项目“南沙海区减薄陆壳裂陷盆地构造演化及特色深水油气系统”(U1701245);国家科技重大专项课题“南海中建海域深水油气地质条件及目标评价”(2017ZX05026-006);中国地质调查局地质调查项目(DD20190209;DD20190216)
详细信息
    作者简介: 李学林(1994—),男,助理工程师,主要从事海洋地质、海洋地球物理方向的研究,E-mail:lixl@idsse.ac.cn
    通讯作者: 吴时国(1963—),男,研究员,主要从事海底构造、海洋地质和天然气水合物研究,E-mail:swu@idsse.ac.cn
  • 中图分类号: P736.3

Seismic sequence and evolution model of isolated carbonate platform—A case from Yongle Atoll, Xisha Islands

More Information
  • 永乐环礁作为典型的现代孤立碳酸盐台地,记录了西沙海域生物礁以及碳酸盐台地的整个兴衰历史。根据新采集的高分辨率多道地震数据,结合永乐环礁琛科2井以及永乐环礁东部西科1井的研究结果,对永乐环礁内部进行层序地层学研究,讨论了永乐环礁的演化过程,建立了西沙孤立碳酸盐台地的发育模式。根据地震反射同相轴特征变化,自下而上划分出Sq1(下中新统)、Sq2(中中新统)、Sq3(上中新统)、Sq4(上新统)、Sq5(第四系)5个层序,建立了永乐环礁的年代地层格架。重建了永乐碳酸盐台地自中新世以来的演化历史:台地顶部自中新世以来沉积环境相对稳定,以潟湖为主;而台地斜坡早中新世为滨浅海环境,发育生物礁,中中新世至今为半深海沉积环境,斜坡区有水道侵蚀,发育源于台地顶部的重力流沉积,在台地西部的斜坡区还发现了第四纪等深流沉积。综上,将西沙孤立碳酸盐台地发育演化划分为早中新世萌芽期、中中新世繁盛期、晚中新世—上新世淹没期、第四纪现代环礁4个阶段。本次研究弥补了以往对西沙孤立碳酸盐台地发育演化研究的不足。

  • 加载中
  • 图 1  研究区地形地貌位置和地震测线位置图

    Figure 1. 

    图 2  西沙碳酸盐台地地震层序划分[10]

    Figure 2. 

    图 3  琛科2井和西科1井的岩心柱以及西沙海域海平面变化曲线[12,30]

    Figure 3. 

    图 4  永乐环礁地震层序划分

    Figure 4. 

    图 5  高分辨率地震数据中识别出的特殊地震相

    Figure 5. 

    图 6  永乐环礁西部斜坡解释剖面

    Figure 6. 

    图 7  永乐环礁东部斜坡解释剖面

    Figure 7. 

    图 8  永乐环礁发育演化模式

    Figure 8. 

    表 1  岛礁地震探测航次采集参数对比

    Table 1.  Comparison of seismic acquisition parameters for reef island

    采集参数2010年巴哈马Caranar航次2007年马尔代夫M74/4航次2017年永乐环礁高分辨率地震探测航次
    接受道数/道96144128
    测线间距/km斜坡区2.5不详主测线2.5~5
    道间距/m6.256.253.125
    最小偏移距/m不详不详69.7
    炮间距/m不详2512.5
    震源容量Mini-GI 24in3组合Mini-GI 105in3组合Mini-GI 520in3
    信号频道/Hz40~350主频100~120主频100~120
    下载: 导出CSV
  • [1]

    Vail P R, Colin J P, Duchene R J, et al. Sequence stratigraphy and its application to the chronostratigraphic correlation of the paris basin jurassic [J]. Bulletin Societe Geologique France, 1987, 3(7): 1301-1330.

    [2]

    Posamentier H W, Vail P R. Eustatic controls on clastic deposition II-Sequence and systems tract models[M]//Sea-Level Changes: An Integrated Approach.Tulsa, Okla: SEPM, 1988: 125-154.

    [3]

    Betzler C, Hübscher C, Lindhorst S, et al. Monsoon-induced partial carbonate platform drowning (Maldives, Indian Ocean) [J]. Geology, 2009, 37(10): 867-870. doi: 10.1130/G25702A.1

    [4]

    Eberli G P, Ginsburg R N. Comment and reply on “Segmentation and coalescence of Cenozoic carbonate platforms, northwestern Great Bahama Bank”: Reply [J]. Geology, 1987, 15(11): 1082.

    [5]

    Schlager W, Warrlich G. Record of sea-level fall in tropical carbonates [J]. Basin Research, 2009, 21(2): 209-224. doi: 10.1111/j.1365-2117.2008.00383.x

    [6]

    Wilson M E J. Cenozoic carbonates in Southeast Asia: implications for equatorial carbonate development [J]. Sedimentary Geology, 2002, 147(3-4): 295-428. doi: 10.1016/S0037-0738(01)00228-7

    [7]

    Wilson M E J. Global and regional influences on equatorial shallow-marine carbonates during the Cenozoic [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 265(3-4): 262-274. doi: 10.1016/j.palaeo.2008.05.012

    [8]

    Fournier F, Montaggioni L, Borgomano J. Paleoenvironments and high-frequency cyclicity from Cenozoic South-East Asian shallow-water carbonates: a case study from the Oligo-Miocene buildups of Malampaya (Offshore Palawan, Philippines) [J]. Marine and Petroleum Geology, 2004, 21(1): 1-21. doi: 10.1016/j.marpetgeo.2003.11.012

    [9]

    Webster J M, Wallace L, Silver E, et al. Drowned carbonate platforms in the Huon Gulf, Papua New Guinea [J]. Geochemistry, Geophysics, Geosystems, 2004, 5(11): Q11008.

    [10]

    Rankey E C. Seismic architecture and seismic geomorphology of heterozoan carbonates: Eocene-Oligocene, Browse Basin, Northwest Shelf, Australia [J]. Marine and Petroleum Geology, 2017, 82: 424-443. doi: 10.1016/j.marpetgeo.2017.02.011

    [11]

    Principaud M, Ponte J P, Mulder T, et al. Slope-to-basin stratigraphic evolution of the northwestern Great Bahama Bank (Bahamas) during the Neogene to Quaternary: interactions between downslope and bottom currents deposits [J]. Basin Research, 2017, 29(6): 699-724. doi: 10.1111/bre.12195

    [12]

    Fan T L, Yu K F, Zhao J X, et al. Strontium isotope stratigraphy and paleomagnetic age constraints on the evolution history of coral reef islands, northern South China Sea [J]. GSA Bulletin, 2020, 132(3-4): 803-816. doi: 10.1130/B35088.1

    [13]

    Jiang W, Yu K F, Fan T L, et al. Coral reef carbonate record of the Pliocene-Pleistocene climate transition from an atoll in the South China Sea [J]. Marine Geology, 2019, 411: 88-97. doi: 10.1016/j.margeo.2019.02.006

    [14]

    Wang R, Jones B, Yu K F. Island dolostones: Genesis by time-transgressive or event dolomitization [J]. Sedimentary Geology, 2019, 390: 15-30. doi: 10.1016/j.sedgeo.2019.07.002

    [15]

    Wang R, Yu K F, Jones B, et al. Evolution and development of Miocene “island dolostones” on Xisha Islands, South China Sea [J]. Marine Geology, 2018, 406: 142-158. doi: 10.1016/j.margeo.2018.09.006

    [16]

    Zhang Y, Yu K F, Qian H D, et al. The basement and volcanic activities of the Xisha Islands: Evidence from the kilometre-scale drilling in the northwestern South China Sea [J]. Geological Journal, 2020, 55: 571-583. doi: 10.1002/gj.3416

    [17]

    罗威, 张道军, 刘新宇, 等. 西沙地区西科1井综合地层学研究[J]. 地层学杂志, 2018, 42(4):485-498

    LUO Wei, ZHANG Daojun, LIU Xinyu, et al. A comprehensive stratigraphic study of Well XK-1 in the Xisha area [J]. Journal of Stratigraphy, 2018, 42(4): 485-498.

    [18]

    张功成. 南海北部陆坡深水区构造演化及其特征[J]. 石油学报, 2010, 31(4):528-533, 541 doi: 10.7623/syxb201004002

    ZHANG Gongcheng. Tectonic evolution of deepwater area of northern continental margin in South China Sea [J]. Acta Petrolei Sinica, 2010, 31(4): 528-533, 541. doi: 10.7623/syxb201004002

    [19]

    Qiu X L, Ye S Y, Wu S M, et al. Crustal structure across the xisha trough, northwestern South China Sea [J]. Tectonophysics, 2001, 341(1-4): 179-193. doi: 10.1016/S0040-1951(01)00222-0

    [20]

    朱伟林, 谢习农, 王振峰, 等. 南海西沙隆起基底成因新认识[J]. 中国科学: 地球科学, 2017, 47(12):1460-1468 doi: 10.1360/N072017-00011

    ZHU Weilin, XIE Xinong, WANG Zhenfeng, et al. New insights on the origin of the basement of the Xisha uplift, South China Sea [J]. Scientia Sinica Terrae, 2017, 47(12): 1460-1468. doi: 10.1360/N072017-00011

    [21]

    Li C F, Li J B, Ding W W, et al. Seismic stratigraphy of the central South China Sea basin and implications for neotectonics [J]. Journal of Geophysical Research-Solid Earth, 2015, 120(3): 1377-1399. doi: 10.1002/2014JB011686

    [22]

    吴时国, 张新元. 南海共轭陆缘新生代碳酸盐台地对海盆构造演化的响应[J]. 地球科学—中国地质大学学报, 2015, 40(2):234-248 doi: 10.3799/dqkx.2015.017

    WU Shiguo, ZHANG Xinyuan. Response of cenozoic carbonate platform on tectonic evolution in the conjugated margin of South China Sea [J]. Earth Science-Journal of China University of Geosciences, 2015, 40(2): 234-248. doi: 10.3799/dqkx.2015.017

    [23]

    马玉波, 吴时国, 杜晓慧, 等. 西沙碳酸盐岩建隆发育模式及其主控因素[J]. 海洋地质与第四纪地质, 2011, 31(4):59-67

    MA Yubo, WU Shiguo, DU Xiaohui, et al. Evolutionary model and control factors of Xisha carbonate buildup [J]. Marine Geology & Qaternary Geology, 2011, 31(4): 59-67.

    [24]

    Wu S G, Yang Z, Wang D W, et al. Architecture, development and geological control of the Xisha carbonate platforms, northwestern South China Sea [J]. Marine Geology, 2014, 350: 71-83. doi: 10.1016/j.margeo.2013.12.016

    [25]

    杨振, 张光学, 张莉, 等. 西沙海域中新世碳酸盐台地的时空分布及其油气成藏模式[J]. 地质学报, 2017, 91(6):1360-1373 doi: 10.3969/j.issn.0001-5717.2017.06.014

    YANG Zhen, ZHANG Guangxue, ZHANG Li, et al. The spatial-temporal distribution of miocene carbonate platform in the Xisha sea area and its model of hydrocarbon accumulation [J]. Acta Geologica Sinica, 2017, 91(6): 1360-1373. doi: 10.3969/j.issn.0001-5717.2017.06.014

    [26]

    Shao L, Li Q Y, Zhu W L, et al. Neogene carbonate platform development in the NW South China Sea: Litho-, bio- and chemo-stratigraphic evidence [J]. Marine Geology, 2017, 385: 233-243. doi: 10.1016/j.margeo.2017.01.009

    [27]

    Ma Y B, Wu S G, Lv F L, et al. Seismic characteristics and development of the Xisha carbonate platforms, northern margin of the South China Sea [J]. Journal of Asian Earth Sciences, 2011, 40(3): 770-783. doi: 10.1016/j.jseaes.2010.11.003

    [28]

    张汉羽, 吴时国, 韩孝辉, 等. 岛礁地震资料特征分析及处理流程——以西沙永乐环礁为例[J]. 海洋地质与第四纪地质, 2018, 38(6):172-184

    ZHANG Hanyu, WU Shiguo, HAN Xiaohui, et al. Characteristics of seismic data and its processing procedures in the areas of Reef Islands—a case from Yongle Atoll of Xisha Islands [J]. Marine Geology & Qaternary Geology, 2018, 38(6): 172-184.

    [29]

    刘刚, 何其江, 李亮, 等. 西沙群岛永乐环礁瀉湖沉积速率及地球化学特征[J]. 海洋地质与第四纪地质, 2018, 38(6):69-77

    LIU Gang, HE Qijiang, LI Liang, et al. Sedimentation rate and geochemical characters of the lagoonal deposits in the Yongle Atoll, Xisha Islands [J]. Marine Geology & Qaternary Geology, 2018, 38(6): 69-77.

    [30]

    Shao L, Cui Y C, Qiao P J, et al. Sea-level changes and carbonate platform evolution of the Xisha Islands (South China Sea) since the Early Miocene [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 504-516. doi: 10.1016/j.palaeo.2017.07.006

    [31]

    Betzler C, Fürstenau J, Lüdmann T, et al. Sea-level and ocean-current control on carbonate-platform growth, Maldives, Indian Ocean [J]. Basin Research, 2013, 25(2): 172-196. doi: 10.1111/j.1365-2117.2012.00554.x

    [32]

    王子兰, 王仕俭, 李素闪, 等. GeoEast处理解释一体化应用[J]. 天然气工业, 2007, 27(S1):222-224

    WANG Zilan, WANG Shijian, LI Sushan, et al. GeoEast processing and interpretation of integrated applications [J]. Natural Gas Industry, 2007, 27(S1): 222-224.

    [33]

    Fontaine J M, Cussey R, Lacaze J, et al. Seismic interpretation of carbonate depositional environments [J]. AAPG Bulletin, 1987, 71(3): 281-297.

    [34]

    Paumard V, Zuckmeyer E, Boichard R, et al. Evolution of Late Oligocene-Early Miocene attached and isolated carbonate platforms in a volcanic ridge context (Maldives type), Yadana field, offshore Myanmar [J]. Marine and Petroleum Geology, 2017, 81: 361-387. doi: 10.1016/j.marpetgeo.2016.12.012

    [35]

    Shahzad K, Betzker C, Ahmed N, et al. Growth and demise of a Paleogene isolated carbonate platform of the Offshore Indus Basin, Pakistan: effects of regional and local controlling factors [J]. International Journal of Earth Sciences, 2018, 107(2): 481-504. doi: 10.1007/s00531-017-1504-7

    [36]

    Shahzad K, Betzker C, Qayyum F. Controls on the Paleogene carbonate platform growth under greenhouse climate conditions (Offshore Indus Basin) [J]. Marine and Petroleum Geology, 2019, 101: 519-539. doi: 10.1016/j.marpetgeo.2018.12.025

  • 加载中

(8)

(1)

计量
  • 文章访问数:  1410
  • PDF下载数:  24
  • 施引文献:  0
出版历程
收稿日期:  2019-11-19
修回日期:  2020-01-19
刊出日期:  2020-10-25

目录