南海琼东上升流区过去1 900年海洋生产力记录

计超, 徐利强, 张一辉, 郭敏, 孔德明. 南海琼东上升流区过去1 900年海洋生产力记录[J]. 海洋地质与第四纪地质, 2020, 40(5): 97-106. doi: 10.16562/j.cnki.0256-1492.2019092502
引用本文: 计超, 徐利强, 张一辉, 郭敏, 孔德明. 南海琼东上升流区过去1 900年海洋生产力记录[J]. 海洋地质与第四纪地质, 2020, 40(5): 97-106. doi: 10.16562/j.cnki.0256-1492.2019092502
JI Chao, XU Liqiang, ZHANG Yihui, GUO Min, KONG Deming. A 1 900-year record of marine productivity in the upwelling area of east continental shelf of Hainan Island, South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 97-106. doi: 10.16562/j.cnki.0256-1492.2019092502
Citation: JI Chao, XU Liqiang, ZHANG Yihui, GUO Min, KONG Deming. A 1 900-year record of marine productivity in the upwelling area of east continental shelf of Hainan Island, South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 97-106. doi: 10.16562/j.cnki.0256-1492.2019092502

南海琼东上升流区过去1 900年海洋生产力记录

  • 基金项目: 国家自然科学基金“晚全新世西沙海鸟营养级变化对重金属传输效率的影响”(41402148);黄土与第四纪地质国家重点实验室开放基金“南海琼东上升流区过去2000年环境演变及其机理” (SKLLQG1929);国家留学基金(201806695035)
详细信息
    作者简介: 计超(1995—),男,硕士,从事第四纪地质研究,E-mail:jichao1995@foxmail.com
    通讯作者: 徐利强(1984—),男,博士,硕士生导师,主要从事生态环境演变研究,E-mail:xlq@hfut.edu.cn
  • 中图分类号: P736.2

A 1 900-year record of marine productivity in the upwelling area of east continental shelf of Hainan Island, South China Sea

More Information
  • 对南海琼东陆架上升流区一根45 cm海洋沉积柱样进行了年龄和地球化学元素分析,并利用生物源Ba(Babio)重建了研究区过去1 900年的海洋生产力记录。结果表明海洋生产力在过去的1 900年中变化明显,在中世纪暖期时生产力相对较高,而在气候相对凉爽的小冰期时生产力相对低。海洋生产力在过去100多年增加迅速(当前Babio约为210 μg/g),达到过去1 900年以来的最高水平。通过与气候环境记录对比,发现琼东上升流区海洋生产力受东亚夏季风影响显著,并与温度变化之间存在一定的关联。在气候温暖期,东亚夏季风强度增加,引起沿岸上升流增强,使得海洋生产力提高。在全球变暖背景下,人为因素导致的气候变化可能会对该地区海洋生产力造成影响。

  • 加载中
  • 图 1  研究区及QD2站位分布图

    Figure 1. 

    图 2  QD2沉积柱基于Clam的年龄-深度模型

    Figure 2. 

    图 3  QD2沉积柱Ti, Ba, Al, Ni/Co, Babio, Ba/Ti和Ba/(Rb+Zr)随深度的变化图

    Figure 3. 

    图 4  琼东陆架海域海洋生产力与气候环境指标对比图

    Figure 4. 

  • [1]

    Chassot E, Bonhommeau S, Dulvy N K, et al. Global marine primary production constrains fisheries catches [J]. Ecology Letters, 2010, 13(4): 495-505. doi: 10.1111/j.1461-0248.2010.01443.x

    [2]

    Friedland K D, Charles S, Drinkwater K F, et al. Pathways between primary production and fisheries yields of large marine ecosystems [J]. PLoS One, 2012, 7(1): e28945. doi: 10.1371/journal.pone.0028945

    [3]

    Gruber N, Galloway J N. An earth-system perspective of the global nitrogen cycle [J]. Nature, 2008, 451(7176): 293-296. doi: 10.1038/nature06592

    [4]

    Keller K M, Joos F, Lehner F, et al. Detecting changes in marine responses to ENSO from 850 to 2100 C. E.: Insights from the ocean carbon cycle [J]. Geophysical Research Letters, 2015, 42(2): 518-525. doi: 10.1002/2014GL062398

    [5]

    Pospelova V, Price A M, Pedersen T F. Palynological evidence for late Quaternary climate and marine primary productivity changes along the California margin [J]. Paleoceanography, 2015, 30(7): 877-894. doi: 10.1002/2014PA002728

    [6]

    Moore J K, Fu W W, Primeau F, et al. Sustained climate warming drives declining marine biological productivity [J]. Science, 2018, 359(6380): 1139-1143. doi: 10.1126/science.aao6379

    [7]

    Wollenburg J E, Knies J, Mackensen A. High-resolution paleoproductivity fluctuations during the past 24 kyr as indicated by benthic foraminifera in the marginal Arctic Ocean [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 204(3-4): 209-238. doi: 10.1016/S0031-0182(03)00726-0

    [8]

    钮耀诚, 张译元, 杜江辉, 等. 南海西部MIS 3期底栖有孔虫反映的生产力变化[J]. 海洋地质与第四纪地质, 2011, 31(1):85-92

    NIU Yaocheng, ZHANG Yiyuan, DU Jianghui, et al. Variations in paleoproductivity recorded by benthic. foraminifera during mis 3 from the western South China Sea [J]. Marine Geology & Quaternary Geology, 2011, 31(1): 85-92.

    [9]

    Bittniok B, Lazarus D B, Diester-Haass L, et al. Radiolarian and sedimentologic paleoproductivity proxy record from the benguela upwelling system, DSDP site 532, 0-6 Ma [J]. Marine Micropaleontology, 2004, 68(3): 223-235.

    [10]

    Eshet Y, Almogi-Labin A. Calcareous nannofossils as paleoproductivity indicators in Upper Cretaceous organic-rich sequences in Israel [J]. Marine Micropaleontology, 1996, 29(1): 37-61. doi: 10.1016/0377-8398(96)00006-0

    [11]

    Zhao J T, Li T G, Li J, et al. Paleoproductivity variations in the southern Okinawa Trough since the middle Holocene: Calcareous nannofossil records [J]. Chinese Science Bulletin, 2012, 57(30): 3917-3922. doi: 10.1007/s11434-012-5276-y

    [12]

    Wang R J, Li J. Quaternary high-resolution opal record and its paleoproductivity implication at ODP Site 1143, southern South China Sea [J]. Chinese Science Bulletin, 2003, 48(4): 363-367.

    [13]

    Serno S, Winckler G, Anderson R F, et al. Using the natural spatial pattern of marine productivity in the Subarctic North Pacific to evaluate paleoproductivity proxies [J]. Paleoceanography and Paleoclimatology, 2014, 29(5): 438-453.

    [14]

    Dezileau L, Reyss J L, Lemoine F. Late Quaternary changes in biogenic opal fluxes in the Southern Indian Ocean [J]. Marine Geology, 2003, 202(3-4): 143-158. doi: 10.1016/S0025-3227(03)00283-4

    [15]

    Hinrichs K U, Schneider R R, Müller P J, et al. A biomarker perspective on paleoproductivity variations in two Late Quaternary sediment sections from the Southeast Atlantic Ocean [J]. Organic Geochemistry, 1999, 30(5): 341-366. doi: 10.1016/S0146-6380(99)00007-8

    [16]

    Devendra D, Xiang R, Thilakanayaka V, et al. Paleoproductivity changes in the Southern South China Sea from the Last Glacial to the Holocene: Evidence from Stable Isotopes and Total Organic Carbon [J]. International Journal of Geology and Earth Sciences, 2019, 5(2): 1-14.

    [17]

    Zhai L N, Wan S M, Tada R, et al. Links between iron supply from Asian dust and marine productivity in the Japan Sea since four million years ago [J]. Geological Magazine, 2019: 1-11. doi: 10.1017/S0016756819000554

    [18]

    Schmitz B. Barium, equatorial high productivity, and the northward wandering of the Indian continent [J]. Paleoceanography and Paleoclimatology, 1987, 2(1): 63-77.

    [19]

    Bridgestock L, Hsieh Y T, Porcelli D, et al. Controls on the barium isotope compositions of marine sediments [J]. Earth and Planetary Science Letters, 2018, 481: 101-110. doi: 10.1016/j.jpgl.2017.10.019

    [20]

    倪建宇, 赵军, 江巧文, 等. 南海北部海域沉积物中生物钡、碳氮同位素的组成特征及其与表层水体初级生产之间的关系[J]. 海洋学报, 2019, 41(2):41-51

    Ni J Y, Zhao J, Jiang Q W, et al. Biogenic barium, carbon and nitrogen isotopes features in sediments of the northern South China Sea and their correlation with primary productivity of surface ocean [J]. Acta Oceanologica Sinica, 2019, 41(2): 41-51.

    [21]

    赵泉鸿, 汪品先. 南海第四纪古海洋学研究进展[J]. 第四纪研究, 1999, 19(6):481-501 doi: 10.3321/j.issn:1001-7410.1999.06.001

    ZHAO Quanhong, WANG Pinxian. Progress in quaternary paleoceanography of the south China sea: a review [J]. Quaternary Sciences, 1999, 19(6): 481-501. doi: 10.3321/j.issn:1001-7410.1999.06.001

    [22]

    Liu Z F, Zhao Y L, Colin C, et al. Source-to-sink transport processes of fluvial sediments in the South China Sea [J]. Earth-Science Reviews, 2016, 153: 238-237. doi: 10.1016/j.earscirev.2015.08.005

    [23]

    Zhou X X, Ding Y H, Wang P X. Moisture transport in the Asian summer monsoon region and its relationship with summer precipitation in China [J]. Journal of Meteorological Research, 2010, 24(1): 31-42.

    [24]

    Huang C, Zeng T, Ye F, et al. Natural and anthropogenic impacts on environmental changes over the past 7500 years based on the multi-proxy study of shelf sediments in the northern South China Sea [J]. Quaternary Science Reviews, 2018, 197: 35-48. doi: 10.1016/j.quascirev.2018.08.005

    [25]

    Yuan J H, Luo Y L, Xu Z L, et al. Deep-sea pollen record during 3.0-2.0 Ma B.P. from ODP Site 1143 and its response to global climate changes [J]. Marine Science Bulletin, 2006, 8(1): 1-10.

    [26]

    黄宝琦, 翦知湣, 林慧玲. 南海东北部晚第四纪古生产力变化[J]. 海洋地质与第四纪地质, 2000, 20(2):65-68

    HUANG Baoqi, JIAN Zhimin, LIN Huiling. Late Quaternary changes of paleoproductivity in the northeastern South China Sea [J]. Marine Geology & Quaternary Geology, 2000, 20(2): 65-68.

    [27]

    梁静之, 黄宝琦, 董轶婷, 等. 南海北部MD12-3432站MIS 11期以来底栖有孔虫反映的古环境变化[J]. 地学前缘, 2016, 23(4):292-300

    LIANG Jingzhi, HUANG Baoqi, DONG Yiting, et al. Benthic foraminifera's implications on paleo-environment variability in MD12-3432 in the northern South China Sea since MIS 11 [J]. Earth Science Frontiers, 2016, 23(4): 292-300.

    [28]

    Wang R J, Abelmann A. Radiolarian responses to paleoceanographic events of the southern South China Sea during the Pleistocene [J]. Marine Micropaleontology, 2002, 46(1-2): 25-44. doi: 10.1016/S0377-8398(02)00048-8

    [29]

    李建, 王汝建. 南海北部一百万年以来的表层古生产力变化: 来自ODP1144站的蛋白石记录[J]. 地质学报, 2004, 78(2):228-233 doi: 10.3321/j.issn:0001-5717.2004.02.012

    LI Jian, WANG Rujian. Paleoproductivity variability of the northern South China Sea during the past 1 Ma: The opal record from ODP site 1144 [J]. Acta Geologica Sinica, 2004, 78(2): 228-233. doi: 10.3321/j.issn:0001-5717.2004.02.012

    [30]

    Tang Z, Shi X F, Zhang X, et al. Deglacial biogenic opal peaks revealing enhanced Southern Ocean upwelling during the last 513 ka [J]. Quaternary International, 2016, 425: 445-452. doi: 10.1016/j.quaint.2016.09.020

    [31]

    边叶萍, 翦知湣. 南海最近2400年来的古海洋学变化与历史气候资料的比较[J]. 海洋地质与第四纪地质, 2005, 25(4):73-78

    BIAN Yeping, JIAN Zhimin. Paleoceanographic changes in the South China Sea over the Last 2 400 Years and Their comparison with the historical paleoclimatical records [J]. Marine Geology & Quaternary Geology, 2005, 25(4): 73-78.

    [32]

    李丽, 王慧, 汪品先. 南海北部17937岩心四万年来古环境变化的分子有机地球化学记录[J]. 地球科学—中国地质大学学报, 2008, 33(6):793-799 doi: 10.3799/dqkx.2008.095

    LI Li, WANG Hui, WANG Pinxian. Molecular organic geochemical record of paleoenvironmental changes of core 17937 in northern South China Sea since 40 ka [J]. Earth Science—Journal of China University of Geosciences, 2008, 33(6): 793-799. doi: 10.3799/dqkx.2008.095

    [33]

    Li Y F, Peng S Q, Yang W, et al. Numerical simulation of the structure and variation of upwelling off the east coast of Hainan Island using QuikSCAT winds [J]. Chinese Journal of Oceanology and Limnology, 2012, 30(6): 1068-1081. doi: 10.1007/s00343-012-1275-8

    [34]

    Hu J Y, Liang X S, Lin H Y. Coastal upwelling off the China coasts[M]//Coastal Environment, Disaster, and Infrastructure-A Case Study of China's Coastline. BoD–Books on Demand, 2018. DOI: 10.5772/intechopen.80738.

    [35]

    Song X Y, Lai Z G, Ji R B, et al. Summertime primary production in northwest South China Sea: Interaction of coastal eddy, upwelling and biological processes [J]. Continental Shelf Research, 2012, 48: 110-121. doi: 10.1016/j.csr.2012.07.016

    [36]

    Zhou L B, Huang L M, Tan Y H, et al. Size-based analysis of a zooplankton community under the influence of the Pearl River plume and coastal upwelling in the northeastern South China Sea [J]. Marine Biology Research, 2015, 11(2): 168-179. doi: 10.1080/17451000.2014.904882

    [37]

    Snyder M A, Sloan L C, Diffenbaugh N C, et al. Future climate change and upwelling in the California Current [J]. Geophysical Research Letters, 2003, 30(15): 1823. doi: 10.1029/2003GL017647

    [38]

    Jing Z Y, Qi Y Q, Du Y. Upwelling in the continental shelf of northern South China Sea associated with 1997-1998 El Nino [J]. Journal of Geophysical Research: Oceans, 2011: 116. doi: 10.1029/2010JC006598

    [39]

    Sydeman W J, García-Reyes M, Schoeman D S, et al. Climate change and wind intensification in coastal upwelling ecosystems [J]. Science, 2014, 345(6192): 77-80. doi: 10.1126/science.1251635

    [40]

    吴日升, 李立. 南海上升流研究概述[J]. 台湾海峡, 2003, 22(2):269-277

    WU Risheng, LI Li. Summarization of study on upwelling system in the South China Sea [J]. Journal of Oceanography in Taiwan Strait, 2003, 22(2): 269-277.

    [41]

    郭飞, 侍茂崇, 夏综万. 琼东沿岸上升流二维数值模型的诊断计算[J]. 海洋学报, 1998, 20(6):109-116

    GUO Fei, SHI Maochong, XIA Zongwan. Two-demension diagnose model to calculate upwelling on offshore of the east coast of Hainan Island [J]. Acta Oceanologica Sinica, 1998, 20(6): 109-116.

    [42]

    Goodkin N F, Switzer A D, McCorry D L, et al. Coral communities of Hong Kong: Long-lived corals in a marginal reef environment [J]. Marine Ecology Progress, 2011, 426: 185-196. doi: 10.3354/meps09019

    [43]

    Dymond J, Collier R, McManus J, et al. Can the aluminum and titanium contents of ocean sediments be used to determine the paleoproductivity of the oceans? [J]. Paleoceanography and Paleoclimatology, 1997, 12(4): 586-593.

    [44]

    James R H, Palmer M R. Marine geochemical cycles of the alkali elements and boron: the role of sediments [J]. Geochimica et Cosmochimica Acta, 2000, 64(18): 3111-3122. doi: 10.1016/S0016-7037(00)00418-X

    [45]

    沈俊, 施张燕, 冯庆来. 古海洋生产力地球化学指标的研究[J]. 地质科技情报, 2011, 30(2):69-77 doi: 10.3969/j.issn.1000-7849.2011.02.012

    SHEN Jun, SHI Zhangyan, FENG Qinglai. Review on geochemical proxies in paleo-productivity studies [J]. Geological Science and Technology Information, 2011, 30(2): 69-77. doi: 10.3969/j.issn.1000-7849.2011.02.012

    [46]

    Yang S Y, Li C X, Cai J G. Geochemical compositions of core sediments in eastern China: Implication for Late Cenozoic palaeoenvironmental changes [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 229(4): 287-302. doi: 10.1016/j.palaeo.2005.06.026

    [47]

    Dymond J, Suess E, Lyle M. Barium in Deep-Sea sediment: a geochemical proxy for paleoproductivity [J]. Paleoceanography and Paleoclimatology, 1992, 7(2): 163-181.

    [48]

    田正隆, 陈绍勇, 龙爱民. 以Ba为指标反演海洋古生产力的研究进展[J]. 热带海洋学报, 2004, 23(3):78-86 doi: 10.3969/j.issn.1009-5470.2004.03.012

    TIAN Zhenglong, CHEN Shaoyong, LONG Aimin. A review on barium as a geochemical proxy to reconstruct paleoproductivity [J]. Journal of Tropical Oceanography, 2004, 23(3): 78-86. doi: 10.3969/j.issn.1009-5470.2004.03.012

    [49]

    韦恒叶. 古海洋生产力与氧化还原指标——元素地球化学综述[J]. 沉积与特提斯地质, 2012, 32(2):76-88 doi: 10.3969/j.issn.1009-3850.2012.02.012

    WEI Yeheng. Productivity and redox proxies of palaeo-oceans: An overview of elementary geochemistry [J]. Sedimentary Geology and Tethyan Geology, 2012, 32(2): 76-88. doi: 10.3969/j.issn.1009-3850.2012.02.012

    [50]

    陈建芳. 古海洋研究中的地球化学新指标[J]. 地球科学进展, 2002, 17(3):402-410 doi: 10.3321/j.issn:1001-8166.2002.03.017

    CHEN Jianfang. New geochemical proxies in paleoc-eanography studies [J]. Advance in Earth Sciences, 2002, 17(3): 402-410. doi: 10.3321/j.issn:1001-8166.2002.03.017

    [51]

    Pirrung M, Illner P, Matthiessen J. Biogenic barium in surface sediments of the European Nordic Seas [J]. Marine Geology, 2008, 250(1-2): 89-103. doi: 10.1016/j.margeo.2008.01.001

    [52]

    Elderfield H. Tracers of ocean paleoproductivity and paleochemistry: An introduction [J]. Paleoceanography and Paleoclimatology, 1990, 5(5): 711-717.

    [53]

    Francois R, Honjo S, Manganini S J, et al. Biogenic barium fluxes to the deep sea: Implications for paleoproductivity reconstruction [J]. Global Biogeochemical Cycles, 1995, 9(2): 289-303. doi: 10.1029/95GB00021

    [54]

    邹亮, 韦刚健, 李军. 海洋沉积物中生物成因Ba的海洋生产力研究[J]. 第四纪研究, 2011, 31(2):307-315 doi: 10.3969/j.issn.1001-7410.2011.02.13

    ZOU Liang, WEI Gangjian, LI Jun. Review on ocean productivity by using biogenic Ba in marine sediments [J]. Quaternary Sciences, 2011, 31(2): 307-315. doi: 10.3969/j.issn.1001-7410.2011.02.13

    [55]

    Riethdorf J R, Nürnberg D, Max L, et al. Millennial-scale variability of marine productivity and terrigenous matter supply in the western Bering Sea over the past 180 kyr [J]. Climate of the Past, 2013, 9(3): 1345-1373. doi: 10.5194/cp-9-1345-2013

    [56]

    Frank M, Gersonde R, Van Der Loeff M R, et al. Similar glacial and interglacial export bioproductivity in the Atlantic sector of the Southern Ocean: Multiproxy evidence and implications for glacial atmospheric CO2 [J]. Paleoceanography and Paleoclimatology, 2000, 15(6): 642-658.

    [57]

    Bonn W J, Gingele F X, Grobe H, et al. Palaeoproductivity at the Antarctic continental margin: opal and barium records for the last 400 ka [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 139(3-4): 195-211. doi: 10.1016/S0031-0182(97)00144-2

    [58]

    Murray R W, Leinen M. Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean [J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3869-3878. doi: 10.1016/0016-7037(96)00236-0

    [59]

    韦刚健, 刘颖, 李献华, 等. 南海沉积物中过剩铝问题的探讨[J]. 矿物岩石地球化学通报, 2003, 22(1):23-25 doi: 10.3969/j.issn.1007-2802.2003.01.005

    WEI Gangjian, LIU Ying, LI Xianhua, et al. Excess al in the sediments from South China Sea [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2003, 22(1): 23-25. doi: 10.3969/j.issn.1007-2802.2003.01.005

    [60]

    Taylor S R, McLennan S M. The continental crust: its composition and evolution[M]. United States: Blackwell Scientific Publishing, 1985.

    [61]

    Klump J, Hebbeln D, Wefer G. The impact of sediment provenance on barium-based productivity estimates [J]. Marine Geology, 2000, 169(3-4): 259-271. doi: 10.1016/S0025-3227(00)00092-X

    [62]

    Goldberg E L, Gorbarenko S A, Shaporenko A D, et al. Instability of last glacial climate from SRXFA data for bottom sediments in the Okhotsk Sea [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 543(1): 284-287. doi: 10.1016/j.nima.2005.01.242

    [63]

    张富元, 张霄宇, 杨群慧, 等. 南海东部海域的沉积作用和物质来源研究[J]. 海洋学报, 2005, 27(2):79-90

    ZHANG Fuyuan, ZHANG Xiaoyu, YANG Hui Qunhui, et al. Research on sedimentations and material sources in the eastern South China Sea [J]. Acta Oceanologica Sinica, 2005, 27(2): 79-90.

    [64]

    Woods A M, Lloyd J M, Zong Y Q, et al. Spatial mapping of Pearl River Estuary surface sediment geochemistry: influence of data analysis on environmental interpretation [J]. Estuarine, Coastal and Shelf Science, 2012, 115: 218-233. doi: 10.1016/j.ecss.2012.09.005

    [65]

    青子琪, 刘连文, 郑洪波. 越南岸外夏季上升流区22万年来东亚季风的沉积与地球化学记录[J]. 海洋地质与第四纪地质, 2005, 25(2):67-72

    QING Ziqi, LIU Lianwen, ZHENG Hongbo. Sedimentological and geochemical records of east asian monsoon in summer upwelling region off the coast of vietnam for the past 220 000 years [J]. Marine Geology & Quaternary Geology, 2005, 25(2): 67-72.

    [66]

    谢玲玲, 张书文, 赵辉. 琼东上升流研究概述[J]. 热带海洋学报, 2012, 31(4):35-41

    XIE Lingling, ZHANG Shuwen, ZHAO Hui. Overview of studies on Qiongdong upwelling [J]. Journal of Tropical Oceanography, 2012, 31(4): 35-41.

    [67]

    刘羿, 彭子成, 韦刚健, 等. 南海北部夏季沿岸上升流近百年的强度变化[J]. 地球化学, 2009, 38(4):317-322 doi: 10.3321/j.issn:0379-1726.2009.04.001

    LIU Yi, PENG Zicheng, WEI Gangjian, et al. Variation of summer coastal upwelling at northern South China Sea during the last 100 years [J]. Geochimica, 2009, 38(4): 317-322. doi: 10.3321/j.issn:0379-1726.2009.04.001

    [68]

    Hu C Y, Henderson G M, Huang J H, et al. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records [J]. Earth and Planetary Science Letters, 2008, 266(3-4): 221-232. doi: 10.1016/j.jpgl.2007.10.015

    [69]

    Tierney J E, Oppo D W, Rosenthal Y, et al. Coordinated hydrological regimes in the Indo-Pacific region during the past two millennia [J]. Paleoceanography and Paleoclimatology, 2010, 25(1): PA1102. doi: 10.1029/2009pa001871

    [70]

    Moy C M, Seltzer G O, Rodbell D T, et al. Variability of El Nino/Southern Oscillation activity at millennial timescales during the Holocene epoch [J]. Nature, 2002, 420(6912): 162-165. doi: 10.1038/nature01194

    [71]

    Yang B, Braeuning A, Johnson K R, et al. General characteristics of temperature variation in China during the last two millennia [J]. Geophysical Research Letters, 2002, 29(9): 38-1-38-4.

    [72]

    Neukom R, Steiger N, Gómez-Navarro J J, et al. No evidence for globally coherent warm and cold periods over the preindustrial Common Era [J]. Nature, 2019, 571(7766): 550-554. doi: 10.1038/s41586-019-1401-2

    [73]

    Jickells T D. Global iron connections between desert dust, ocean biogeochemistry, and climate [J]. Science, 2005, 308(5718): 67-71. doi: 10.1126/science.1105959

  • 加载中

(4)

计量
  • 文章访问数:  2253
  • PDF下载数:  40
  • 施引文献:  0
出版历程
收稿日期:  2019-09-25
修回日期:  2019-11-04
刊出日期:  2020-10-25

目录