珊瑚礁对热液流体的地球化学记录—来自南海西沙永兴岛珊瑚礁稀土元素的证据

魏浩天, 刘刚, 韩孝辉, 赵彦彦, 吴佳庆, 杨俊. 珊瑚礁对热液流体的地球化学记录—来自南海西沙永兴岛珊瑚礁稀土元素的证据[J]. 海洋地质与第四纪地质, 2020, 40(4): 78-95. doi: 10.16562/j.cnki.0256-1492.2019121601
引用本文: 魏浩天, 刘刚, 韩孝辉, 赵彦彦, 吴佳庆, 杨俊. 珊瑚礁对热液流体的地球化学记录—来自南海西沙永兴岛珊瑚礁稀土元素的证据[J]. 海洋地质与第四纪地质, 2020, 40(4): 78-95. doi: 10.16562/j.cnki.0256-1492.2019121601
WEI Haotian, LIU Gang, HAN Xiaohui, ZHAO Yanyan, WU Jiaqing, YANG Jun. Geochemical records of hydrothermal fluids in corals: Evidence of rare earth elements from coral reefs in the Yongxing Island, Xisha, South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 78-95. doi: 10.16562/j.cnki.0256-1492.2019121601
Citation: WEI Haotian, LIU Gang, HAN Xiaohui, ZHAO Yanyan, WU Jiaqing, YANG Jun. Geochemical records of hydrothermal fluids in corals: Evidence of rare earth elements from coral reefs in the Yongxing Island, Xisha, South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 78-95. doi: 10.16562/j.cnki.0256-1492.2019121601

珊瑚礁对热液流体的地球化学记录—来自南海西沙永兴岛珊瑚礁稀土元素的证据

  • 基金项目: 海南省自然科学基金“三沙市永兴岛东部海底滑坡类型分布和成因探讨”(418QN306);“海底透视”创新团队建设项目“南海全新世珊瑚礁高分辨率地球化学研究”(MGQNLM-TD201703);青岛海洋科学与技术国家实验室鳌山科技创新计划“基于‘蛟龙号’深潜的南海若干关键地质与生物过程研究”(2016ASK05);国家自然科学基金“华南新元古代盖帽白云岩沉积微相的镁硅同位素研究”(41873006)
详细信息
    作者简介: 魏浩天(1994―),男,硕士研究生,地质工程专业,E-mail: 13203815640@163.com
    通讯作者: 赵彦彦(1978—),女,教授,从事沉积岩石学及地球化学研究,E-mail: zhaoyanyan@ouc.edu.cn
  • 中图分类号: P736.4

Geochemical records of hydrothermal fluids in corals: Evidence of rare earth elements from coral reefs in the Yongxing Island, Xisha, South China Sea

More Information
  • 碳酸盐岩中稀土元素的含量、配分模式及元素异常记录了周围沉积水体的特征,能够很好地指示古海洋及沉积环境。珊瑚具有的高分辨率和稀土元素的高稳定性的特点,能够忠实地记录周围海水的地球化学特征。本文以南海西沙宣德环礁永兴岛142~84 ka发育的珊瑚礁为研究对象,通过主微量元素含量,尤其是稀土元素含量及其配分图解,判断珊瑚礁形成时周围水体的特征。结果表明自142 ka以来,永兴岛大部分珊瑚礁具有正常海相碳酸盐岩的稀土配分特征,表现为LREE亏损,Ce负异常及高的Y/Ho比值,表明周围水体属于开阔的浅海,但是位于23 m处(年龄为114 ka)的滨珊瑚骨骼格架除了有正常海相碳酸盐岩的特征外,还具有明显的Eu正异常,这表明其形成时有热液流体的加入。经过模型计算,认为在滨珊瑚骨骼格架的生长阶段,至少有0.1%的热液加入周围的海水中。通过资料查询和年龄对比,认为这些热液可能与高尖石岛或海南岛火山活动有关。

  • 加载中
  • 图 1  珊瑚样品采集地点[14]

    Figure 1. 

    图 2  地层柱状图(A),滨珊瑚骨骼化石样品(B)及其X光照片(C)

    Figure 2. 

    图 3  研究区珊瑚礁宏观手标本和显微照片

    Figure 3. 

    图 4  珊瑚礁样品X射线衍射图谱

    Figure 4. 

    图 5  岩心柱样品与滨珊瑚骨骼化石样品稀土元素配分模式图

    Figure 5. 

    图 6  滨珊瑚骨骼化石和岩心柱的NdN/YbN、U与ΣREE含量相关图

    Figure 6. 

    图 7  岩心柱样品与滨珊瑚骨骼化石样品中ΣREE、Y/Ho和Fe、Mn、Ni、Cu之间的相关图

    Figure 7. 

    图 8  岩心柱样品中ΣREE和P之间的相关图

    Figure 8. 

    图 9  滨珊瑚骨骼化石和岩心柱的Y/Ho与Sc、Pb含量相关图

    Figure 9. 

    图 10  滨珊瑚骨骼化石和岩心柱的Ce/Ce*与Eu/Eu*相关图

    Figure 10. 

    图 11  滨珊瑚骨骼化石扫描电镜图片

    Figure 11. 

    图 12  滨珊瑚骨骼化石的Eu/Eu*与[Pr/Yb]PAAS及[Pr/Tb]PAAS相关图

    Figure 12. 

    图 13  计算了标准化水样和PAAS端元的REY模式

    Figure 13. 

    表 1  珊瑚礁样品矿物物相组成

    Table 1.  Mineral phase composition of coral reef samples

    样品号深度/m文石/%方解石/%
    18.4018.4076.423.6
    22.8022.80100
    232376.323.7
    27.7527.7543.656.4
    31.2031.20100
    41.8041.80100
      注:−表示未检出。
    下载: 导出CSV

    表 2  岩心柱中部分珊瑚(包括滨珊瑚骨骼化石)238U-232Th测年结果

    Table 2.  238U-232Th dating results of some corals (including Porites skeleton fossil) in core column

    样品号238U(×10−9232Th(×10−12δ234U*(测量值)230Th/238Uδ234UInitial**(校正后)年龄/ka校正后年龄/kaBP
    YL-18351 670±1.124 128±52114±1.10.606 4±0.000 745144±1.484.18±0.20683.82±0.277
    YL-18902 766±1.81 417±44109±1.00.723 8±0.000 900150±1.3112.40±0.305112.38±0.305
    YL-21752 400±1.3741±37109±1.80.743 1±0.001 038151±2.5117.74±0.473117.73±0.473
    YL-23002 480±1.3398±41113±1.00.734 2±0.000 812156±1.4114.36±0.299114.35±0.30
    YL-24951 222±0.9942±46107±1.20.821 4±0.001 177160±1.8142.49±0.540142.47±0.540
    YL-30113 108±2.2111 312±143104±1.00.795 9±0.000 981152±1.4134.64±0.412133.73±0.615
    YL-36501 888±1.214 549±4585±1.11.063 0±0.001 193220±3.8337.10±3.71336.92±3.71
    YL-4285924±0.76 890±4789±1.21.007 3±0.001 333183±2.6255.73±1.837255.54±1.839
    YL-4605951±0.7594±4088±1.10.982 6±0.001 357171±2.2234.82±1.47234.80±1.47
    YL-4850963±0.7579±4882±1.00.986 6±0.001 279163±2.2243.85±1.53243.84±1.53
    YL-5015509±0.4184±4092±1.30.894 8±0.001 208152±2.2177.96±0.848177.95±0.848
    YL-55301 816±1.1158±4788±1.00.962 6±0.001 209163±1.9220.19±1.135220.19±1.135
      注:234U、238U和230Th的衰变常数;校正的230Th年龄是假定初始的230Th/232Th原子比为(4.4±2.2)×10−6。年龄均相对于1 950 a。
    下载: 导出CSV

    表 3  主量元素测试结果(单位:%)

    Table 3.  Major element test results(unit: %)

    样品名称Al2O3CaOK2OMgONa2OP2O5样品名称SiO2
    2-60.0348.620.020.150.53000-10.034
    2-160.0342.20.010.120.440.01000-20.016
    5-10.0143.880.010.170.59000-30.078
    5-80.0143.240.010.170.59000-40.031
    9-10.0143.60.010.250.59000-50.044
    9-80.0145.20.010.240.67000-60.020
    15-10.0143.620.010.240.6001-1
    15-80.0142.970.010.240.6001-20.011
    19-10.0152.10.020.330.81001-30.057
    19-110.0152.40.020.30.99010-1
    18.75-20.0154.050.660.210.08010-2
    20.00-10.0253.790.010.460.320.05010-3
    20.00-20.0253.830.010.150.510.01021-1
    20.25-10.0263.040.010.270.580.01021-20.033
    20.25-20.0155.060.010.450.320.03021-30.008
    21.05-10.0153.090.010.160.530.01034-10.004
    21.90-20.0357.590.010.330.430.04034-20.011
    22.75-20.0154.210.820.360.05034-30.020
    23.400.0154.160.250.270.05039-10.015
    24.00-10.0153.170.010.50.40.02039-20.018
    24.00-20.0153.050.820.170.04039-3
    25.25-10.0253.610.010.560.380.05054-10.028
    25.25-20.0254.850.640.160.04054-20.011
    26.55-10.0154.680.30.250.02
    26.55-20.0154.060.010.130.360.01
      注:−表示未检出,SiO2为电子探针测试数据。
    下载: 导出CSV

    表 4  稀土元素含量(×10-6)及其相关指标

    Table 4.  Rare earth element content (×10-6) and related indicators

    样品名称YLaCePrNdSmEuGdTbDyHoErTmYbLuΣREYΣREEΣLREE/ΣHREEY/HoLa/La*Ce/Ce*Eu/Eu*
    BLANK-10.0000.0010.0010.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0020.00213.30151.7762.4960.9141.549
    BLANK-20.0000.0000.0010.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0020.00113.654259.5381.7430.9901.161
    GSR-121.3110.9092.7760.2570.9090.1870.0390.2000.0290.1680.0340.0920.0120.0700.0107.0035.6928.24438.6900.6911.3180.952
    JDO-112.4127.2721.8900.9173.5030.6110.1380.7790.1060.6500.1480.4200.0500.2730.03829.20616.7945.81583.6821.8170.1610.920
    2-10.0960.0110.0130.0020.0090.0020.0010.0040.0010.0040.0010.0040.0010.0040.0010.1530.0572.06586.4741.4350.6501.928
    2-100.1010.0110.0120.0020.0080.0020.0010.0040.0010.0050.0010.0040.0010.0040.0010.1570.0551.91689.4821.5740.6071.875
    5-80.0480.0050.0100.0010.0050.0010.0000.0010.0000.0020.0000.0020.0000.0020.0000.0780.0312.69997.1391.6940.9721.529
    9-10.0640.0070.0140.0010.0060.0020.0010.0030.0000.0030.0010.0030.0000.0030.0010.1090.0442.32181.1141.4151.0171.336
    12-10.0570.0060.0110.0010.0050.0020.0010.0020.0000.0030.0010.0020.0000.0020.0000.0920.0352.37396.2351.1680.9662.581
    12-70.0570.0050.0110.0010.0050.0010.0010.0020.0000.0020.0010.0020.0000.0020.0000.0910.0342.538104.1351.2441.0102.940
    22-10.0590.0080.0160.0020.0070.0020.0010.0030.0000.0020.0010.0020.0000.0020.0000.1060.0473.22296.6311.1890.9372.347
    22-120.0610.0060.0140.0010.0060.0020.0010.0020.0000.0020.0010.0020.0000.0020.0000.1010.0402.972105.6481.1631.0712.688
    18.60-11.3060.2450.1590.0470.2090.0580.0150.0810.0130.0920.0210.0650.0090.0550.0092.3831.0762.13561.9701.6280.3401.021
    18.75-21.6750.2760.1890.0580.2500.0710.0190.1030.0160.1080.0270.0820.0110.0740.0122.9691.2951.99262.7171.4110.3460.988
    18.95-22.1250.3270.1930.0670.3050.0860.0230.1250.0210.1500.0350.1070.0150.0900.0143.6821.5571.79860.1461.5710.3001.001
    19.25-20.2400.0380.0360.0080.0340.0090.0030.0120.0020.0130.0030.0100.0010.0090.0010.4190.1792.48878.4581.3140.4751.348
    19.70-11.2350.3300.2770.0670.2810.0700.0180.0900.0140.0900.0200.0610.0080.0500.0082.6181.3833.06461.9761.3780.4291.033
    19.70-21.2680.3660.4690.0750.3090.0760.0200.0960.0160.1000.0220.0660.0090.0570.0092.9571.6903.50356.9631.2780.6511.105
    20.00-11.1590.3640.4420.0740.3010.0750.0220.1000.0150.0930.0210.0630.0090.0510.0082.7981.6393.55955.8971.2830.6211.191
    20.25-10.3000.0720.0530.0140.0630.0170.0050.0210.0030.0200.0040.0130.0020.0100.0020.5980.2982.95870.1211.7360.3871.235
    20.25-20.9030.2040.1460.0400.1790.0490.0130.0640.0100.0680.0150.0440.0060.0350.0061.7820.8792.53959.7511.6090.3721.092
    21.05-10.1270.0290.0250.0040.0200.0050.0020.0080.0010.0080.0030.0060.0010.0050.0010.2460.1182.64946.1762.1570.4941.300
    21.05-20.8850.1960.1400.0380.1660.0450.0120.0610.0100.0660.0150.0430.0060.0350.0051.7220.8372.48460.9071.5450.3721.058
    21.90-10.1920.0550.0670.0090.0360.0080.0030.0110.0020.0110.0020.0070.0010.0060.0010.4120.2194.32678.4901.3570.6731.342
    21.90-21.2020.5710.3480.0930.4130.1010.0250.1260.0170.1110.0250.0710.0100.0580.0093.1791.9773.64448.8111.8960.3431.029
    22.75-21.5890.3820.2520.0750.3300.0880.0230.1190.0180.1220.0270.0780.0100.0640.0103.1881.5992.56558.4861.5690.3431.017
    23.400.6810.1600.1140.0330.1490.0400.0110.0520.0080.0500.0120.0340.0050.0260.0041.3790.6992.67258.1941.5570.3621.068
    23.500.4660.1310.0930.0270.1260.0320.0090.0410.0060.0380.0090.0250.0030.0190.0031.0280.5622.91254.0561.6570.3601.137
    24.00-10.7600.1550.1170.0300.1370.0370.0100.0490.0080.0530.0120.0370.0050.0310.0051.4460.6862.42461.5101.6250.3941.067
    24.00-21.2260.2900.2080.0550.2500.0680.0170.0900.0140.0950.0210.0630.0090.0520.0082.4671.2412.52757.1821.6770.3781.009
    25.25-11.3220.3030.2120.0590.2630.0690.0180.0920.0150.0990.0230.0680.0090.0550.0082.6141.2922.50658.1851.5600.3631.036
    25.25-21.1600.3210.2270.0640.2780.0710.0180.0920.0140.0940.0210.0620.0080.0490.0082.4871.3272.81054.6681.4860.3651.017
    25.76-10.5480.1350.0930.0290.1370.0380.0100.0520.0080.0490.0100.0290.0040.0210.0031.1650.6172.50852.4691.6000.3411.012
    25.76-21.7780.3390.2430.0690.3050.0820.0210.1100.0180.1220.0290.0850.0120.0700.0113.2941.5162.31362.0531.5020.3661.031
    26.55-10.3760.1150.0930.0240.1110.0290.0090.0350.0050.0330.0070.0200.0030.0160.0020.8800.5043.11151.1141.5580.4051.350
    26.55-20.0850.0130.0160.0020.0100.0030.0010.0050.0010.0050.0010.0030.0010.0030.0000.1490.0632.56073.2922.0900.7171.354
    27.55-12.2710.7180.3810.1070.4850.1300.0330.1740.0290.1910.0430.1280.0180.1010.0164.8222.5512.65352.8352.1610.3091.008
    27.55-21.5490.2860.1910.0560.2580.0680.0180.0920.0150.1050.0250.0770.0110.0620.0102.8221.2732.20962.0101.6640.3451.032
    下载: 导出CSV

    表 5  微量元素含量(单位:×10−6

    Table 5.  Trace element content (unit: ×10−6

    样品名称TmYbLuScMnFeNiCuZrPbU
    BLANK-10.0000.0000.0000.0000.0010.1790.0170.0290.0060.0050.002
    BLANK-20.0000.0000.000<LOD0.0020.2940.0100.0130.005<LOD0.001
    GSR-120.0120.0700.0100.06462.169619.12674.5637.9580.0961.2890.074
    JDO-10.0500.2730.0380.18051.29476.9142.3400.4430.1180.3190.549
    2-10.0010.0040.0010.0302.49373.73351.16882.9840.0290.1341.747
    2-100.0010.0040.0010.0340.72833.91964.1133.3050.0220.0581.969
    5-80.0000.0020.0000.0260.7071.6391.0410.0150.2661.804
    9-10.0000.0030.0010.0341.7651.5532.7620.0150.2622.203
    12-10.0000.0020.0000.0381.2921.9801.1492.6660.0170.0841.658
    12-70.0000.0020.0000.0390.9881.7111.1001.5840.0170.1191.861
    22-10.0000.0020.0000.0331.1182.3671.0491.6060.0220.1141.783
    22-120.0000.0020.0000.0321.2663.0131.5332.0400.0240.1121.918
    18.60-10.0090.0550.0090.07535.6546.4449.8381.0590.0990.3311.725
    18.75-20.0110.0740.0120.08423.3303.1544.9370.0800.5112.285
    18.95-20.0150.0900.0140.09930.5059.4232.1820.6040.1390.3721.015
    19.25-20.0010.0090.0010.0513.0232.4560.7961.3250.0380.0652.054
    19.70-10.0080.0500.0080.08912.9916.2453.8621.7970.1740.2611.383
    19.70-20.0090.0570.0090.12612.20115.6667.1912.5550.6510.2931.783
    20.00-10.0090.0510.0080.11213.0659.6560.9170.5820.3632.161
    20.25-10.0020.0100.0020.0455.4533.2633.2618.4370.0390.1552.224
    20.25-20.0060.0350.0060.07524.2408.0481.4435.2930.0980.2582.112
    21.05-10.0010.0050.0010.0332.5485.81213.8490.0190.1602.780
    21.05-20.0060.0350.0050.07813.2124.4272.59713.1350.0570.2301.641
    21.90-10.0010.0060.0010.0461.0204.0891.1741.8390.0200.0421.784
    21.90-20.0100.0580.0090.06110.9130.6881.5200.1500.7882.708
    22.75-20.0100.0640.0100.10717.4805.7260.7254.3690.1010.3961.723
    23.400.0050.0260.0040.0453.5292.2090.9050.4780.0700.2001.974
    23.500.0030.0190.0030.0402.5361.9340.4590.6300.0640.1811.964
    24.00-10.0050.0310.0050.0545.5034.1970.5953.8180.0650.2071.639
    24.00-20.0090.0520.0080.0729.9515.9480.7203.3020.0900.3431.173
    25.25-10.0090.0550.0080.0747.1014.2572.77615.7090.1080.3191.627
    25.25-20.0080.0490.0080.0678.8834.1571.35916.5780.1020.3421.151
    25.76-10.0040.0210.0030.0504.6962.3980.5360.4880.0420.1462.683
    25.76-20.0120.0700.0110.0858.6545.1560.7120.7680.1340.4081.966
    26.55-10.0030.0160.0020.0483.1304.8500.6660.9470.0480.1161.594
    26.55-20.0010.0030.0000.0281.1651.1810.5390.0390.1102.590
    27.55-10.0180.1010.0160.10914.9085.5490.7260.6950.1480.5141.299
    27.55-20.0110.0620.0100.09110.2754.3260.6460.8830.1080.4272.101
      注:−表示未检测。
    下载: 导出CSV
  • [1]

    Kamber B S, Webb G E. The geochemistry of late Archaean microbial carbonate: implications for ocean chemistry and continental erosion history [J]. Geochimica et Cosmochimica Acta, 2001, 65(15): 2509-2525. doi: 10.1016/S0016-7037(01)00613-5

    [2]

    Bolhar R, Van Kranendonk M J, Kamber B S. A trace element study of siderite-jasper banded iron formation in the 3.45 Ga Warrawoona Group, Pilbara Craton-Formation from hydrothermal fluids and shallow seawater [J]. Precambrian Research, 2005, 137(1-2): 93-114. doi: 10.1016/j.precamres.2005.02.001

    [3]

    Bolhar R, Van Kranendonk M J. A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates [J]. Precambrian Research, 2007, 155(3-4): 229-250. doi: 10.1016/j.precamres.2007.02.002

    [4]

    Jiang S Y, Zhao H X, Chen Y Q, et al. Trace and rare earth element geochemistry of phosphate nodules from the lower Cambrian black shale sequence in the Mufu Mountain of Nanjing, Jiangsu province, China [J]. Chemical Geology, 2007, 244(3-4): 584-604. doi: 10.1016/j.chemgeo.2007.07.010

    [5]

    Nothdurft L D, Webb G E, Kamber B S. Rare earth element geochemistry of Late Devonian reefal carbonates, canning basin, Western Australia: confirmation of a seawater REE proxy in ancient limestones [J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 263-283. doi: 10.1016/S0016-7037(03)00422-8

    [6]

    Jiang W, Yu K F, Fan T L, et al. Coral reef carbonate record of the Pliocene-Pleistocene climate transition from an atoll in the South China Sea [J]. Marine Geology, 2019, 411: 88-97. doi: 10.1016/j.margeo.2019.02.006

    [7]

    赵美霞, 余克服, 张乔民. 珊瑚礁区的生物多样性及其生态功能[J]. 生态学报, 2006, 26(1):186-194 doi: 10.3321/j.issn:1000-0933.2006.01.025

    ZHAO Meixia, YU Kefu, ZHANG Qiaomin. Review on coral reefs biodiversity and ecological function [J]. Acta Ecologica Sinica, 2006, 26(1): 186-194. doi: 10.3321/j.issn:1000-0933.2006.01.025

    [8]

    Fallon S J, White J C, McCulloch M T. Porites corals as recorders of mining and environmental impacts: misima Island, Papua New Guinea [J]. Geochimica et Cosmochimica Acta, 2002, 66(1): 45-62. doi: 10.1016/S0016-7037(01)00715-3

    [9]

    Webster J M, Braga J C, Humblet M, et al. Response of the Great Barrier Reef to sea-level and environmental changes over the past 30, 000 years [J]. Nature Geoscience, 2018, 11(6): 426-432. doi: 10.1038/s41561-018-0127-3

    [10]

    余克服. 南海珊瑚礁及其对全新世环境变化的记录与响应[J]. 中国科学: 地球科学, 2012, 55(8):1217-1229 doi: 10.1007/s11430-012-4449-5

    YU Kefu. Coral reefs in the South China Sea: their response to and records on past environmental changes [J]. Science China Earth Sciences, 2012, 55(8): 1217-1229. doi: 10.1007/s11430-012-4449-5

    [11]

    Kasper-Zubillaga J J, Armstrong-Altrin J S, Rosales-Hoz L. Geochemical study of coral skeletons from the Puerto Morelos Reef, southeastern Mexico [J]. Estuarine, Coastal and Shelf Science, 2014, 151: 78-87. doi: 10.1016/j.ecss.2014.09.023

    [12]

    Sholkovitz E, Shen G T. The incorporation of rare earth elements in modern coral [J]. Geochimica et Cosmochimica Acta, 1995, 59(13): 2749-2756. doi: 10.1016/0016-7037(95)00170-5

    [13]

    Webb G E, Nothdurft L D, Kamber B S, et al. Rare earth element geochemistry of scleractinian coral skeleton during meteoric diagenesis: a sequence through neomorphism of aragonite to calcite [J]. Sedimentology, 2009, 56(5): 1433-1463. doi: 10.1111/j.1365-3091.2008.01041.x

    [14]

    陈万利, 吴时国, 黄晓霞, 等. 西沙群岛晚第四纪碳酸盐岩淡水成岩作用——来自永兴岛SSZK1钻孔的地球化学响应证据[J]. 沉积学报, http://doi.org/10.14027/j.issn.1000-0550.2020.006.

    CHEN WanLi, WU ShiGuo, HUANG XiaoXia, et al. Geochemical signatures in the Late Quaternary meteoric diagenetic carbonate succession, Xisha Islands, South China Sea [J]. Acta Sedimentologica Sinica, http://doi.org/10.14027/j.issn.1000-0550.2020.006.

    [15]

    Zhang R X, Yang S Y. A mathematical model for determining carbon coating thickness and its application in electron probe microanalysis [J]. Microscopy and Microanalysis, 2016, 22(6): 1374-1380. doi: 10.1017/S143192761601182X

    [16]

    Zhang X, Yang S Y, Zhao H, et al. Effect of beam current and diameter on electron probe microanalysis of carbonate minerals [J]. Journal of Earth Science, 2019, 30(4): 834-842. doi: 10.1007/s12583-017-0939-x

    [17]

    廖泽波, 邵庆丰, 李春华, 等. MC-ICP-MS标样-样品交叉测试法测定石笋样品的230Th/U年龄[J]. 质谱学报, 2018, 39(3):295-309 doi: 10.7538/zpxb.2017.0072

    LIAO Zebo, SHAO Qingfeng, LI Chunhua, et al. Measurement of U/Th Isotopic Compositions in stalagmites for 230Th/U geochronology using MC-ICP-MS by standard-sample bracketing method [J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(3): 295-309. doi: 10.7538/zpxb.2017.0072

    [18]

    李晓, 刘娜, 吴仕玖, 等. 南海西沙群岛西科1井上新统-全新统碳酸盐岩微相分析[J]. 科技导报, 2016, 34(7):103-110 doi: 10.3981/j.issn.1000-7857.2016.07.009

    LI Xiao, LIU Na, WU Shijiu, et al. Analysis of carbonate microfacies in Pliocene-Holocene, in Well XK-1, the Xisha Islang, South China Sea [J]. Science & Technology Review, 2016, 34(7): 103-110. doi: 10.3981/j.issn.1000-7857.2016.07.009

    [19]

    解习农, 谢玉洪, 李绪深, 等. 南海西科1井碳酸盐岩生物礁储层沉积学: 层序地层与沉积演化[M]. 武汉: 中国地质大学出版社, 2016.

    XIE Xinong, XIE Yuhong, LI Xushen, et al. Sedimentology of carbonate reef reservoirs in Well Xike-1, South China Sea: Sequence Stratigraphy and Sedimentary Evolution[M]. Wuhan: China University of Geosciences, 2016

    [20]

    Van Kranendonk M J, Webb G E, Kamber B S. Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archaean ocean [J]. Geobiology, 2003, 1(2): 91-108. doi: 10.1046/j.1472-4669.2003.00014.x

    [21]

    Frimmel H E. Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator [J]. Chemical Geology, 2009, 258(3-4): 338-353. doi: 10.1016/j.chemgeo.2008.10.033

    [22]

    Lawrence M G, Greig A, Collerson K D, et al. Rare earth element and yttrium variability in South East Queensland waterways [J]. Aquatic Geochemistry, 2006, 12(1): 39-72. doi: 10.1007/s10498-005-4471-8

    [23]

    Zhao Y Y, Zheng Y F, Chen F K. Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China [J]. Chemical Geology, 2009, 265(3-4): 345-362. doi: 10.1016/j.chemgeo.2009.04.015

    [24]

    Bayon G, German C R, Burton K W, et al. Sedimentary Fe-Mn oxyhydroxides as paleoceanographic archives and the role of aeolian flux in regulating oceanic dissolved REE [J]. Earth and Planetary Science Letters, 2004, 224(3-4): 477-492. doi: 10.1016/j.jpgl.2004.05.033

    [25]

    Byrne R H, Liu X W, Schijf J. The influence of phosphate coprecipitation on rare earth distributions in natural waters [J]. Geochimica et Cosmochimica Acta, 1996, 60(17): 3341-3346. doi: 10.1016/0016-7037(96)00197-4

    [26]

    Zhao M Y, Zheng Y F. A geochemical framework for retrieving the linked depositional and diagenetic histories of marine carbonates [J]. Earth and Planetary Science Letters, 2017, 460: 213-221. doi: 10.1016/j.jpgl.2016.11.033

    [27]

    Zhao M Y, Zheng Y F. Marine carbonate records of terrigenous input into Paleotethyan seawater: Geochemical constraints from Carboniferous limestones [J]. Geochimica et Cosmochimica Acta, 2014, 141: 508-531. doi: 10.1016/j.gca.2014.07.001

    [28]

    Haley B A, Klinkhammer G P, McManus J. Rare earth elements in pore waters of marine sediments [J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1265-1279. doi: 10.1016/j.gca.2003.09.012

    [29]

    Bayon G, Birot D, Ruffine L, et al. Evidence for intense REE scavenging at cold seeps from the Niger Delta margin [J]. Earth and Planetary Science Letters, 2011, 312(3-4): 443-452. doi: 10.1016/j.jpgl.2011.10.008

    [30]

    Kidder D L, Krishnaswamy R, Mapes R H. Elemental mobility in phosphatic shales during concretion growth and implications for provenance analysis [J]. Chemical Geology, 2003, 198(3-4): 335-353. doi: 10.1016/S0009-2541(03)00036-6

    [31]

    Kamber B S, Webb G E, Gallagher M. The rare earth element signal in Archaean microbial carbonate: information on ocean redox and biogenicity [J]. Journal of the Geological Society, 2014, 171(6): 745-763. doi: 10.1144/jgs2013-110

    [32]

    Barnard L A, Macintyre I G, Pierce J W. Possible environmental index in tropical reef corals [J]. Nature, 1974, 252(5480): 219-220. doi: 10.1038/252219a0

    [33]

    Porta G D, Webb G E, McDonald I. REE patterns of microbial carbonate and cements from Sinemurian (Lower Jurassic) siliceous sponge mounds (Djebel Bou Dahar, High Atlas, Morocco) [J]. Chemical Geology, 2015, 400: 65-86. doi: 10.1016/j.chemgeo.2015.02.010

    [34]

    Mc Lennan S M, Bock B, Hemming S R, et al. The roles of provenance sedimentary processes in the geochemistry of sedimentary rocks[M]//Lentz D R. Geological Association of Canada Short Course Notes. Toronto: Geological Association of Canada, 2003.

    [35]

    Sholkovitz E R, Piepgras D J, Jacobsen S B. The pore water chemistry of rare earth elements in Buzzards Bay sediments [J]. Geochimica Et Cosmochimica Acta, 1989, 53(11): 2847-2856. doi: 10.1016/0016-7037(89)90162-2

    [36]

    Webb G E, Kamber B S. Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy [J]. Geochimica Et Cosmochimica Acta, 2000, 64(9): 1557-1565. doi: 10.1016/S0016-7037(99)00400-7

    [37]

    Banner J L, Hanson G N, Meyers W J. Rare earth element and nd isotopic variations in regionally extensive dolomites from the burlington-keokuk formation (Mississippian): implications for REE mobility during carbonate diagenesis [J]. Journal of Sedimentary Research, 1988, 58(3): 415-432.

    [38]

    Kim J H, Torres M E, Haley B A, et al. The effect of diagenesis and fluid migration on rare earth element distribution in pore fluids of the northern Cascadia accretionary margin [J]. Chemical Geology, 2012, 291: 152-165. doi: 10.1016/j.chemgeo.2011.10.010

    [39]

    Shields G, Stille P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites [J]. Chemical Geology, 2001, 175(1-2): 29-48. doi: 10.1016/S0009-2541(00)00362-4

    [40]

    Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater [J]. Geochimica et Cosmochimica Acta, 1996, 60(10): 1709-1725. doi: 10.1016/0016-7037(96)00063-4

    [41]

    Shields G A, Webb G E. Has the REE composition of seawater changed over geological time? [J]. Chemical Geology, 2004, 204(1-2): 103-107. doi: 10.1016/j.chemgeo.2003.09.010

    [42]

    Bau M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect [J]. Contributions to Mineralogy and Petrology, 1996, 123(3): 323-333. doi: 10.1007/s004100050159

    [43]

    Bau M, Dulski P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa [J]. Precambrian Research, 1996, 79(1-2): 37-55. doi: 10.1016/0301-9268(95)00087-9

    [44]

    Tanaka K, Tani Y, Takahashi Y, et al. A specific Ce oxidation process during sorption of rare earth elements on biogenic Mn oxide produced by Acremonium sp. strain KR21-2 [J]. Geochimica et Cosmochimica Acta, 2010, 74(19): 5463-5477. doi: 10.1016/j.gca.2010.07.010

    [45]

    German C R, Elderfield H. Application of the Ce anomaly as a paleoredox indicator: the ground rules [J]. Paleoceanography, 1990, 5(5): 823-833. doi: 10.1029/PA005i005p00823

    [46]

    Ling H F, Chen X, Li D, et al. Cerium anomaly variations in Ediacaran-earliest Cambrian carbonates from the Yangtze Gorges area, South China: implications for oxygenation of coeval shallow seawater [J]. Precambrian Research, 2013, 225: 110-127. doi: 10.1016/j.precamres.2011.10.011

    [47]

    Kawabe I, Kitahara Y, Naito K. Non-chondritic yttrium/holmium ratio and lanthanide tetrad effect observed in pre-Cenozoic limestones [J]. Geochemical Journal, 1991, 25(1): 31-44. doi: 10.2343/geochemj.25.31

    [48]

    Bau M, Dulski P. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater [J]. Chemical Geology, 1999, 155(1-2): 77-90. doi: 10.1016/S0009-2541(98)00142-9

    [49]

    Alibo D S, Nozaki Y. Rare earth elements in seawater: Particle association, shale-normalization, and Ce oxidation [J]. Geochimica et Cosmochimica Acta, 1999, 63(3-4): 363-372. doi: 10.1016/S0016-7037(98)00279-8

    [50]

    Luong L D, Ryuichi S, Nguyen H, et al. Spatial variations in dissolved rare earth element concentrations in the East China Sea water column [J]. Marine Chemistry, 2018, 205: 1-15. doi: 10.1016/j.marchem.2018.07.004

    [51]

    Michard A, Albarède F, Michard G, et al. Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13°N) [J]. Nature, 1983, 303(5920): 795-797. doi: 10.1038/303795a0

    [52]

    German C R, Klinkhammer G P, Edmond J M, et al. Hydrothermal scavenging of rare-earth elements in the ocean [J]. Nature, 1990, 345(6275): 516-518. doi: 10.1038/345516a0

    [53]

    Chen D Z, Qing H R, Yan X, et al. Hydrothermal venting and basin evolution (Devonian, South China): constraints from rare earth element geochemistry of chert [J]. Sedimentary Geology, 2006, 183(3-4): 203-216. doi: 10.1016/j.sedgeo.2005.09.020

    [54]

    Kamber B S, Greig A, Collerson K D. A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia [J]. Geochimica et Cosmochimica Acta, 2005, 69(4): 1041-1058. doi: 10.1016/j.gca.2004.08.020

    [55]

    Wang Q X, Lin Z J, Chen D F. Geochemical constraints on the origin of Doushantuo cap carbonates in the Yangtze Gorges area, South China [J]. Sedimentary Geology, 2014, 304: 59-70. doi: 10.1016/j.sedgeo.2014.02.006

    [56]

    Michard A, Albarède F. The REE content of some hydrothermal fluids [J]. Chemical Geology, 1986, 55(1-2): 51-60. doi: 10.1016/0009-2541(86)90127-0

    [57]

    Alexander B W, Bau M, Andersson P, et al. Continentally-derived solutes in shallow Archean seawater: rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa [J]. Geochimica et Cosmochimica Acta, 2008, 72(2): 378-394. doi: 10.1016/j.gca.2007.10.028

    [58]

    Robbins L J, Lalonde S V, Planavsky N J, et al. Trace elements at the intersection of marine biological and geochemical evolution [J]. Earth-Science Reviews, 2016, 163: 323-348. doi: 10.1016/j.earscirev.2016.10.013

    [59]

    Bau M, Balan S, Schmidt K, et al. Rare earth elements in mussel shells of the Mytilidae family as tracers for hidden and fossil high-temperature hydrothermal systems [J]. Earth and Planetary Science Letters, 2010, 299(3-4): 310-316. doi: 10.1016/j.jpgl.2010.09.011

    [60]

    Johannessen K C, Roost J V, Dahle H, et al. Environmental controls on biomineralization and Fe-mound formation in a low-temperature hydrothermal system at the Jan Mayen Vent Fields [J]. Geochimica et Cosmochimica Acta, 2017, 202: 101-123. doi: 10.1016/j.gca.2016.12.016

    [61]

    Ho K S, Chen J C, Juang W S. Geochronology and geochemistry of late Cenozoic basalts from the Leiqiong area, Southern China [J]. Journal of Asian Earth Sciences, 2000, 18(3): 307-324. doi: 10.1016/S1367-9120(99)00059-0

    [62]

    孙嘉诗. 南海北部及广东沿海新生代火山活动[J]. 海洋地质与第四纪地质, 1991, 11(3):45-66

    SUN Jiashi. Cenozoic volcanic activity in the Northern South China Sea and Guangdong coastal area [J]. Marine Geology & Quaternary Geology, 1991, 11(3): 45-66.

    [63]

    樊祺诚, 孙谦, 李霓, 等. 琼北火山活动分期与全新世岩浆演化[J]. 岩石学报, 2004, 20(3):533-544 doi: 10.3969/j.issn.1000-0569.2004.03.017

    FAN Qicheng, SUN Qian, LI Ni, et al. Periods of volcanic activity and magma evolution of Holocene in North Hainan Island [J]. Acta Petrologica Sinica, 2004, 20(3): 533-544. doi: 10.3969/j.issn.1000-0569.2004.03.017

    [64]

    冯英辞, 詹文欢, 孙杰, 等. 西沙海域上新世以来火山特征及其形成机制[J]. 热带海洋学报, 2017, 36(3):73-79

    FENG Yingci, ZHAN Wenhuan, SUN Jie, et al. The formation mechanism and characteristics of volcanoes in the Xisha waters since Pliocene [J]. Journal of Tropical Oceanography, 2017, 36(3): 73-79.

    [65]

    邹和平. 试谈南海海盆地壳属性问题—由南海海盆及其邻区玄武岩的比较研究进行讨论[J]. 大地构造与成矿学, 1993, 17(4):293-303

    ZOU Heping. On the problem about the crust’s attribution of South China Sea basin-discussion from comparative study on basalts of seamounts in South China Sea basin and the neighboring areas [J]. Geotectonica et Metallogenia, 1993, 17(4): 293-303.

    [66]

    吕炳全, 王国忠, 全松青, 等. 试论西沙群岛石岛的形成[J]. 地质科学, 1986(1):82-89

    LV Bingquan, WANG Guozhong, QUAN Songqing, et al. A preliminary study of the formation of Shidao Island, Xisha Islands [J]. Chinese Journal of Geology, 1986(1): 82-89.

  • 加载中

(13)

(5)

计量
  • 文章访问数:  2496
  • PDF下载数:  68
  • 施引文献:  0
出版历程
收稿日期:  2019-12-16
修回日期:  2020-02-12
刊出日期:  2020-08-25

目录