Geochemical records of hydrothermal fluids in corals: Evidence of rare earth elements from coral reefs in the Yongxing Island, Xisha, South China Sea
-
摘要:
碳酸盐岩中稀土元素的含量、配分模式及元素异常记录了周围沉积水体的特征,能够很好地指示古海洋及沉积环境。珊瑚具有的高分辨率和稀土元素的高稳定性的特点,能够忠实地记录周围海水的地球化学特征。本文以南海西沙宣德环礁永兴岛142~84 ka发育的珊瑚礁为研究对象,通过主微量元素含量,尤其是稀土元素含量及其配分图解,判断珊瑚礁形成时周围水体的特征。结果表明自142 ka以来,永兴岛大部分珊瑚礁具有正常海相碳酸盐岩的稀土配分特征,表现为LREE亏损,Ce负异常及高的Y/Ho比值,表明周围水体属于开阔的浅海,但是位于23 m处(年龄为114 ka)的滨珊瑚骨骼格架除了有正常海相碳酸盐岩的特征外,还具有明显的Eu正异常,这表明其形成时有热液流体的加入。经过模型计算,认为在滨珊瑚骨骼格架的生长阶段,至少有0.1%的热液加入周围的海水中。通过资料查询和年龄对比,认为这些热液可能与高尖石岛或海南岛火山活动有关。
Abstract:The contents, distribution pattern and elemental anomalies of rare earth elements in carbonates are the records of surrounding water. Corals are characterized by high resolution and high stability of rare earth elements and may faithfully record the geochemical characteristics of the surrounding seawater. In this paper, we analyzed the coral reefs from 142 to 84 ka collected from the Yongxing Island of the Xuande Atoll of Xisha Islands, South China Sea. Trace element contents, especially the rare earth element contents and their distribution patterns are used in this paper to determine the characteristics of the sea water, in which the coral reefs grew. Results show that, since 142 ka, most of the coral reefs in the Yongxing Island has a normal rare earth element distribution pattern of marine carbonates, characterized by LREE depletion, negative Ce anomalies and high Y/Ho ratios, indicating an environment of open shallow sea. In contrast, the coral skeletons in depth of 23 m 114 ka have similar LREE depletion, negative Ce anomalies and high Y/Ho ratios, but positive Eu anomalies. This suggests that certain amount of hydrothermal fluid has been input during the growth of corals. Based on the model calculations, it is inferred that at least 0.1% of hydrothermal fluid has been added to the open seawater during that time. The hydrothermal fluids may be related to the volcanic activities observed at Gaojianshi island or Hainan island.
-
Key words:
- coral /
- rare earth element /
- Eu anomaly /
- hydrothermal solution /
- South China Sea
-
图 1 珊瑚样品采集地点[14]
Figure 1.
表 1 珊瑚礁样品矿物物相组成
Table 1. Mineral phase composition of coral reef samples
样品号 深度/m 文石/% 方解石/% 18.40 18.40 76.4 23.6 22.80 22.80 100 − 23 23 76.3 23.7 27.75 27.75 43.6 56.4 31.20 31.20 − 100 41.80 41.80 − 100 注:−表示未检出。 表 2 岩心柱中部分珊瑚(包括滨珊瑚骨骼化石)238U-232Th测年结果
Table 2. 238U-232Th dating results of some corals (including
Porites skeleton fossil) in core column 样品号 238U(×10−9) 232Th(×10−12) δ234U*(测量值) 230Th/238U δ234UInitial**(校正后) 年龄/ka 校正后年龄/kaBP YL-1835 1 670±1.1 24 128±52 114±1.1 0.606 4±0.000 745 144±1.4 84.18±0.206 83.82±0.277 YL-1890 2 766±1.8 1 417±44 109±1.0 0.723 8±0.000 900 150±1.3 112.40±0.305 112.38±0.305 YL-2175 2 400±1.3 741±37 109±1.8 0.743 1±0.001 038 151±2.5 117.74±0.473 117.73±0.473 YL-2300 2 480±1.3 398±41 113±1.0 0.734 2±0.000 812 156±1.4 114.36±0.299 114.35±0.30 YL-2495 1 222±0.9 942±46 107±1.2 0.821 4±0.001 177 160±1.8 142.49±0.540 142.47±0.540 YL-3011 3 108±2.2 111 312±143 104±1.0 0.795 9±0.000 981 152±1.4 134.64±0.412 133.73±0.615 YL-3650 1 888±1.2 14 549±45 85±1.1 1.063 0±0.001 193 220±3.8 337.10±3.71 336.92±3.71 YL-4285 924±0.7 6 890±47 89±1.2 1.007 3±0.001 333 183±2.6 255.73±1.837 255.54±1.839 YL-4605 951±0.7 594±40 88±1.1 0.982 6±0.001 357 171±2.2 234.82±1.47 234.80±1.47 YL-4850 963±0.7 579±48 82±1.0 0.986 6±0.001 279 163±2.2 243.85±1.53 243.84±1.53 YL-5015 509±0.4 184±40 92±1.3 0.894 8±0.001 208 152±2.2 177.96±0.848 177.95±0.848 YL-5530 1 816±1.1 158±47 88±1.0 0.962 6±0.001 209 163±1.9 220.19±1.135 220.19±1.135 注:234U、238U和230Th的衰变常数、和;;校正的230Th年龄是假定初始的230Th/232Th原子比为(4.4±2.2)×10−6。年龄均相对于1 950 a。 表 3 主量元素测试结果(单位:%)
Table 3. Major element test results(unit: %)
样品名称 Al2O3 CaO K2O MgO Na2O P2O5 样品名称 SiO2 2-6 0.03 48.62 0.02 0.15 0.53 – 000-1 0.034 2-16 0.03 42.2 0.01 0.12 0.44 0.01 000-2 0.016 5-1 0.01 43.88 0.01 0.17 0.59 – 000-3 0.078 5-8 0.01 43.24 0.01 0.17 0.59 – 000-4 0.031 9-1 0.01 43.6 0.01 0.25 0.59 – 000-5 0.044 9-8 0.01 45.2 0.01 0.24 0.67 – 000-6 0.020 15-1 0.01 43.62 0.01 0.24 0.6 – 001-1 – 15-8 0.01 42.97 0.01 0.24 0.6 – 001-2 0.011 19-1 0.01 52.1 0.02 0.33 0.81 – 001-3 0.057 19-11 0.01 52.4 0.02 0.3 0.99 – 010-1 – 18.75-2 0.01 54.05 – 0.66 0.21 0.08 010-2 – 20.00-1 0.02 53.79 0.01 0.46 0.32 0.05 010-3 – 20.00-2 0.02 53.83 0.01 0.15 0.51 0.01 021-1 – 20.25-1 0.02 63.04 0.01 0.27 0.58 0.01 021-2 0.033 20.25-2 0.01 55.06 0.01 0.45 0.32 0.03 021-3 0.008 21.05-1 0.01 53.09 0.01 0.16 0.53 0.01 034-1 0.004 21.90-2 0.03 57.59 0.01 0.33 0.43 0.04 034-2 0.011 22.75-2 0.01 54.21 – 0.82 0.36 0.05 034-3 0.020 23.40 0.01 54.16 – 0.25 0.27 0.05 039-1 0.015 24.00-1 0.01 53.17 0.01 0.5 0.4 0.02 039-2 0.018 24.00-2 0.01 53.05 – 0.82 0.17 0.04 039-3 – 25.25-1 0.02 53.61 0.01 0.56 0.38 0.05 054-1 0.028 25.25-2 0.02 54.85 – 0.64 0.16 0.04 054-2 0.011 26.55-1 0.01 54.68 – 0.3 0.25 0.02 26.55-2 0.01 54.06 0.01 0.13 0.36 0.01 注:−表示未检出,SiO2为电子探针测试数据。 表 4 稀土元素含量(×10-6)及其相关指标
Table 4. Rare earth element content (×10-6) and related indicators
样品名称 Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ΣREY ΣREE ΣLREE/ΣHREE Y/Ho La/La* Ce/Ce* Eu/Eu* BLANK-1 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.002 13.301 51.776 2.496 0.914 1.549 BLANK-2 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.001 13.654 259.538 1.743 0.990 1.161 GSR-12 1.311 0.909 2.776 0.257 0.909 0.187 0.039 0.200 0.029 0.168 0.034 0.092 0.012 0.070 0.010 7.003 5.692 8.244 38.690 0.691 1.318 0.952 JDO-1 12.412 7.272 1.890 0.917 3.503 0.611 0.138 0.779 0.106 0.650 0.148 0.420 0.050 0.273 0.038 29.206 16.794 5.815 83.682 1.817 0.161 0.920 2-1 0.096 0.011 0.013 0.002 0.009 0.002 0.001 0.004 0.001 0.004 0.001 0.004 0.001 0.004 0.001 0.153 0.057 2.065 86.474 1.435 0.650 1.928 2-10 0.101 0.011 0.012 0.002 0.008 0.002 0.001 0.004 0.001 0.005 0.001 0.004 0.001 0.004 0.001 0.157 0.055 1.916 89.482 1.574 0.607 1.875 5-8 0.048 0.005 0.010 0.001 0.005 0.001 0.000 0.001 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.078 0.031 2.699 97.139 1.694 0.972 1.529 9-1 0.064 0.007 0.014 0.001 0.006 0.002 0.001 0.003 0.000 0.003 0.001 0.003 0.000 0.003 0.001 0.109 0.044 2.321 81.114 1.415 1.017 1.336 12-1 0.057 0.006 0.011 0.001 0.005 0.002 0.001 0.002 0.000 0.003 0.001 0.002 0.000 0.002 0.000 0.092 0.035 2.373 96.235 1.168 0.966 2.581 12-7 0.057 0.005 0.011 0.001 0.005 0.001 0.001 0.002 0.000 0.002 0.001 0.002 0.000 0.002 0.000 0.091 0.034 2.538 104.135 1.244 1.010 2.940 22-1 0.059 0.008 0.016 0.002 0.007 0.002 0.001 0.003 0.000 0.002 0.001 0.002 0.000 0.002 0.000 0.106 0.047 3.222 96.631 1.189 0.937 2.347 22-12 0.061 0.006 0.014 0.001 0.006 0.002 0.001 0.002 0.000 0.002 0.001 0.002 0.000 0.002 0.000 0.101 0.040 2.972 105.648 1.163 1.071 2.688 18.60-1 1.306 0.245 0.159 0.047 0.209 0.058 0.015 0.081 0.013 0.092 0.021 0.065 0.009 0.055 0.009 2.383 1.076 2.135 61.970 1.628 0.340 1.021 18.75-2 1.675 0.276 0.189 0.058 0.250 0.071 0.019 0.103 0.016 0.108 0.027 0.082 0.011 0.074 0.012 2.969 1.295 1.992 62.717 1.411 0.346 0.988 18.95-2 2.125 0.327 0.193 0.067 0.305 0.086 0.023 0.125 0.021 0.150 0.035 0.107 0.015 0.090 0.014 3.682 1.557 1.798 60.146 1.571 0.300 1.001 19.25-2 0.240 0.038 0.036 0.008 0.034 0.009 0.003 0.012 0.002 0.013 0.003 0.010 0.001 0.009 0.001 0.419 0.179 2.488 78.458 1.314 0.475 1.348 19.70-1 1.235 0.330 0.277 0.067 0.281 0.070 0.018 0.090 0.014 0.090 0.020 0.061 0.008 0.050 0.008 2.618 1.383 3.064 61.976 1.378 0.429 1.033 19.70-2 1.268 0.366 0.469 0.075 0.309 0.076 0.020 0.096 0.016 0.100 0.022 0.066 0.009 0.057 0.009 2.957 1.690 3.503 56.963 1.278 0.651 1.105 20.00-1 1.159 0.364 0.442 0.074 0.301 0.075 0.022 0.100 0.015 0.093 0.021 0.063 0.009 0.051 0.008 2.798 1.639 3.559 55.897 1.283 0.621 1.191 20.25-1 0.300 0.072 0.053 0.014 0.063 0.017 0.005 0.021 0.003 0.020 0.004 0.013 0.002 0.010 0.002 0.598 0.298 2.958 70.121 1.736 0.387 1.235 20.25-2 0.903 0.204 0.146 0.040 0.179 0.049 0.013 0.064 0.010 0.068 0.015 0.044 0.006 0.035 0.006 1.782 0.879 2.539 59.751 1.609 0.372 1.092 21.05-1 0.127 0.029 0.025 0.004 0.020 0.005 0.002 0.008 0.001 0.008 0.003 0.006 0.001 0.005 0.001 0.246 0.118 2.649 46.176 2.157 0.494 1.300 21.05-2 0.885 0.196 0.140 0.038 0.166 0.045 0.012 0.061 0.010 0.066 0.015 0.043 0.006 0.035 0.005 1.722 0.837 2.484 60.907 1.545 0.372 1.058 21.90-1 0.192 0.055 0.067 0.009 0.036 0.008 0.003 0.011 0.002 0.011 0.002 0.007 0.001 0.006 0.001 0.412 0.219 4.326 78.490 1.357 0.673 1.342 21.90-2 1.202 0.571 0.348 0.093 0.413 0.101 0.025 0.126 0.017 0.111 0.025 0.071 0.010 0.058 0.009 3.179 1.977 3.644 48.811 1.896 0.343 1.029 22.75-2 1.589 0.382 0.252 0.075 0.330 0.088 0.023 0.119 0.018 0.122 0.027 0.078 0.010 0.064 0.010 3.188 1.599 2.565 58.486 1.569 0.343 1.017 23.40 0.681 0.160 0.114 0.033 0.149 0.040 0.011 0.052 0.008 0.050 0.012 0.034 0.005 0.026 0.004 1.379 0.699 2.672 58.194 1.557 0.362 1.068 23.50 0.466 0.131 0.093 0.027 0.126 0.032 0.009 0.041 0.006 0.038 0.009 0.025 0.003 0.019 0.003 1.028 0.562 2.912 54.056 1.657 0.360 1.137 24.00-1 0.760 0.155 0.117 0.030 0.137 0.037 0.010 0.049 0.008 0.053 0.012 0.037 0.005 0.031 0.005 1.446 0.686 2.424 61.510 1.625 0.394 1.067 24.00-2 1.226 0.290 0.208 0.055 0.250 0.068 0.017 0.090 0.014 0.095 0.021 0.063 0.009 0.052 0.008 2.467 1.241 2.527 57.182 1.677 0.378 1.009 25.25-1 1.322 0.303 0.212 0.059 0.263 0.069 0.018 0.092 0.015 0.099 0.023 0.068 0.009 0.055 0.008 2.614 1.292 2.506 58.185 1.560 0.363 1.036 25.25-2 1.160 0.321 0.227 0.064 0.278 0.071 0.018 0.092 0.014 0.094 0.021 0.062 0.008 0.049 0.008 2.487 1.327 2.810 54.668 1.486 0.365 1.017 25.76-1 0.548 0.135 0.093 0.029 0.137 0.038 0.010 0.052 0.008 0.049 0.010 0.029 0.004 0.021 0.003 1.165 0.617 2.508 52.469 1.600 0.341 1.012 25.76-2 1.778 0.339 0.243 0.069 0.305 0.082 0.021 0.110 0.018 0.122 0.029 0.085 0.012 0.070 0.011 3.294 1.516 2.313 62.053 1.502 0.366 1.031 26.55-1 0.376 0.115 0.093 0.024 0.111 0.029 0.009 0.035 0.005 0.033 0.007 0.020 0.003 0.016 0.002 0.880 0.504 3.111 51.114 1.558 0.405 1.350 26.55-2 0.085 0.013 0.016 0.002 0.010 0.003 0.001 0.005 0.001 0.005 0.001 0.003 0.001 0.003 0.000 0.149 0.063 2.560 73.292 2.090 0.717 1.354 27.55-1 2.271 0.718 0.381 0.107 0.485 0.130 0.033 0.174 0.029 0.191 0.043 0.128 0.018 0.101 0.016 4.822 2.551 2.653 52.835 2.161 0.309 1.008 27.55-2 1.549 0.286 0.191 0.056 0.258 0.068 0.018 0.092 0.015 0.105 0.025 0.077 0.011 0.062 0.010 2.822 1.273 2.209 62.010 1.664 0.345 1.032 表 5 微量元素含量(单位:×10−6)
Table 5. Trace element content (unit: ×10−6)
样品名称 Tm Yb Lu Sc Mn Fe Ni Cu Zr Pb U BLANK-1 0.000 0.000 0.000 0.000 0.001 0.179 0.017 0.029 0.006 0.005 0.002 BLANK-2 0.000 0.000 0.000 <LOD 0.002 0.294 0.010 0.013 0.005 <LOD 0.001 GSR-12 0.012 0.070 0.010 0.064 62.169 619.126 74.563 7.958 0.096 1.289 0.074 JDO-1 0.050 0.273 0.038 0.180 51.294 76.914 2.340 0.443 0.118 0.319 0.549 2-1 0.001 0.004 0.001 0.030 2.493 73.733 51.168 82.984 0.029 0.134 1.747 2-10 0.001 0.004 0.001 0.034 0.728 33.919 64.113 3.305 0.022 0.058 1.969 5-8 0.000 0.002 0.000 0.026 0.707 – 1.639 1.041 0.015 0.266 1.804 9-1 0.000 0.003 0.001 0.034 1.765 – 1.553 2.762 0.015 0.262 2.203 12-1 0.000 0.002 0.000 0.038 1.292 1.980 1.149 2.666 0.017 0.084 1.658 12-7 0.000 0.002 0.000 0.039 0.988 1.711 1.100 1.584 0.017 0.119 1.861 22-1 0.000 0.002 0.000 0.033 1.118 2.367 1.049 1.606 0.022 0.114 1.783 22-12 0.000 0.002 0.000 0.032 1.266 3.013 1.533 2.040 0.024 0.112 1.918 18.60-1 0.009 0.055 0.009 0.075 35.654 6.444 9.838 1.059 0.099 0.331 1.725 18.75-2 0.011 0.074 0.012 0.084 23.330 – 3.154 4.937 0.080 0.511 2.285 18.95-2 0.015 0.090 0.014 0.099 30.505 9.423 2.182 0.604 0.139 0.372 1.015 19.25-2 0.001 0.009 0.001 0.051 3.023 2.456 0.796 1.325 0.038 0.065 2.054 19.70-1 0.008 0.050 0.008 0.089 12.991 6.245 3.862 1.797 0.174 0.261 1.383 19.70-2 0.009 0.057 0.009 0.126 12.201 15.666 7.191 2.555 0.651 0.293 1.783 20.00-1 0.009 0.051 0.008 0.112 13.065 – 9.656 0.917 0.582 0.363 2.161 20.25-1 0.002 0.010 0.002 0.045 5.453 3.263 3.261 8.437 0.039 0.155 2.224 20.25-2 0.006 0.035 0.006 0.075 24.240 8.048 1.443 5.293 0.098 0.258 2.112 21.05-1 0.001 0.005 0.001 0.033 2.548 – 5.812 13.849 0.019 0.160 2.780 21.05-2 0.006 0.035 0.005 0.078 13.212 4.427 2.597 13.135 0.057 0.230 1.641 21.90-1 0.001 0.006 0.001 0.046 1.020 4.089 1.174 1.839 0.020 0.042 1.784 21.90-2 0.010 0.058 0.009 0.061 10.913 – 0.688 1.520 0.150 0.788 2.708 22.75-2 0.010 0.064 0.010 0.107 17.480 5.726 0.725 4.369 0.101 0.396 1.723 23.40 0.005 0.026 0.004 0.045 3.529 2.209 0.905 0.478 0.070 0.200 1.974 23.50 0.003 0.019 0.003 0.040 2.536 1.934 0.459 0.630 0.064 0.181 1.964 24.00-1 0.005 0.031 0.005 0.054 5.503 4.197 0.595 3.818 0.065 0.207 1.639 24.00-2 0.009 0.052 0.008 0.072 9.951 5.948 0.720 3.302 0.090 0.343 1.173 25.25-1 0.009 0.055 0.008 0.074 7.101 4.257 2.776 15.709 0.108 0.319 1.627 25.25-2 0.008 0.049 0.008 0.067 8.883 4.157 1.359 16.578 0.102 0.342 1.151 25.76-1 0.004 0.021 0.003 0.050 4.696 2.398 0.536 0.488 0.042 0.146 2.683 25.76-2 0.012 0.070 0.011 0.085 8.654 5.156 0.712 0.768 0.134 0.408 1.966 26.55-1 0.003 0.016 0.002 0.048 3.130 4.850 0.666 0.947 0.048 0.116 1.594 26.55-2 0.001 0.003 0.000 0.028 1.165 – 1.181 0.539 0.039 0.110 2.590 27.55-1 0.018 0.101 0.016 0.109 14.908 5.549 0.726 0.695 0.148 0.514 1.299 27.55-2 0.011 0.062 0.010 0.091 10.275 4.326 0.646 0.883 0.108 0.427 2.101 注:−表示未检测。 -
[1] Kamber B S, Webb G E. The geochemistry of late Archaean microbial carbonate: implications for ocean chemistry and continental erosion history [J]. Geochimica et Cosmochimica Acta, 2001, 65(15): 2509-2525. doi: 10.1016/S0016-7037(01)00613-5
[2] Bolhar R, Van Kranendonk M J, Kamber B S. A trace element study of siderite-jasper banded iron formation in the 3.45 Ga Warrawoona Group, Pilbara Craton-Formation from hydrothermal fluids and shallow seawater [J]. Precambrian Research, 2005, 137(1-2): 93-114. doi: 10.1016/j.precamres.2005.02.001
[3] Bolhar R, Van Kranendonk M J. A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates [J]. Precambrian Research, 2007, 155(3-4): 229-250. doi: 10.1016/j.precamres.2007.02.002
[4] Jiang S Y, Zhao H X, Chen Y Q, et al. Trace and rare earth element geochemistry of phosphate nodules from the lower Cambrian black shale sequence in the Mufu Mountain of Nanjing, Jiangsu province, China [J]. Chemical Geology, 2007, 244(3-4): 584-604. doi: 10.1016/j.chemgeo.2007.07.010
[5] Nothdurft L D, Webb G E, Kamber B S. Rare earth element geochemistry of Late Devonian reefal carbonates, canning basin, Western Australia: confirmation of a seawater REE proxy in ancient limestones [J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 263-283. doi: 10.1016/S0016-7037(03)00422-8
[6] Jiang W, Yu K F, Fan T L, et al. Coral reef carbonate record of the Pliocene-Pleistocene climate transition from an atoll in the South China Sea [J]. Marine Geology, 2019, 411: 88-97. doi: 10.1016/j.margeo.2019.02.006
[7] 赵美霞, 余克服, 张乔民. 珊瑚礁区的生物多样性及其生态功能[J]. 生态学报, 2006, 26(1):186-194 doi: 10.3321/j.issn:1000-0933.2006.01.025
ZHAO Meixia, YU Kefu, ZHANG Qiaomin. Review on coral reefs biodiversity and ecological function [J]. Acta Ecologica Sinica, 2006, 26(1): 186-194. doi: 10.3321/j.issn:1000-0933.2006.01.025
[8] Fallon S J, White J C, McCulloch M T. Porites corals as recorders of mining and environmental impacts: misima Island, Papua New Guinea [J]. Geochimica et Cosmochimica Acta, 2002, 66(1): 45-62. doi: 10.1016/S0016-7037(01)00715-3
[9] Webster J M, Braga J C, Humblet M, et al. Response of the Great Barrier Reef to sea-level and environmental changes over the past 30, 000 years [J]. Nature Geoscience, 2018, 11(6): 426-432. doi: 10.1038/s41561-018-0127-3
[10] 余克服. 南海珊瑚礁及其对全新世环境变化的记录与响应[J]. 中国科学: 地球科学, 2012, 55(8):1217-1229 doi: 10.1007/s11430-012-4449-5
YU Kefu. Coral reefs in the South China Sea: their response to and records on past environmental changes [J]. Science China Earth Sciences, 2012, 55(8): 1217-1229. doi: 10.1007/s11430-012-4449-5
[11] Kasper-Zubillaga J J, Armstrong-Altrin J S, Rosales-Hoz L. Geochemical study of coral skeletons from the Puerto Morelos Reef, southeastern Mexico [J]. Estuarine, Coastal and Shelf Science, 2014, 151: 78-87. doi: 10.1016/j.ecss.2014.09.023
[12] Sholkovitz E, Shen G T. The incorporation of rare earth elements in modern coral [J]. Geochimica et Cosmochimica Acta, 1995, 59(13): 2749-2756. doi: 10.1016/0016-7037(95)00170-5
[13] Webb G E, Nothdurft L D, Kamber B S, et al. Rare earth element geochemistry of scleractinian coral skeleton during meteoric diagenesis: a sequence through neomorphism of aragonite to calcite [J]. Sedimentology, 2009, 56(5): 1433-1463. doi: 10.1111/j.1365-3091.2008.01041.x
[14] 陈万利, 吴时国, 黄晓霞, 等. 西沙群岛晚第四纪碳酸盐岩淡水成岩作用——来自永兴岛SSZK1钻孔的地球化学响应证据[J]. 沉积学报, http://doi.org/10.14027/j.issn.1000-0550.2020.006.
CHEN WanLi, WU ShiGuo, HUANG XiaoXia, et al. Geochemical signatures in the Late Quaternary meteoric diagenetic carbonate succession, Xisha Islands, South China Sea [J]. Acta Sedimentologica Sinica, http://doi.org/10.14027/j.issn.1000-0550.2020.006.
[15] Zhang R X, Yang S Y. A mathematical model for determining carbon coating thickness and its application in electron probe microanalysis [J]. Microscopy and Microanalysis, 2016, 22(6): 1374-1380. doi: 10.1017/S143192761601182X
[16] Zhang X, Yang S Y, Zhao H, et al. Effect of beam current and diameter on electron probe microanalysis of carbonate minerals [J]. Journal of Earth Science, 2019, 30(4): 834-842. doi: 10.1007/s12583-017-0939-x
[17] 廖泽波, 邵庆丰, 李春华, 等. MC-ICP-MS标样-样品交叉测试法测定石笋样品的230Th/U年龄[J]. 质谱学报, 2018, 39(3):295-309 doi: 10.7538/zpxb.2017.0072
LIAO Zebo, SHAO Qingfeng, LI Chunhua, et al. Measurement of U/Th Isotopic Compositions in stalagmites for 230Th/U geochronology using MC-ICP-MS by standard-sample bracketing method [J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(3): 295-309. doi: 10.7538/zpxb.2017.0072
[18] 李晓, 刘娜, 吴仕玖, 等. 南海西沙群岛西科1井上新统-全新统碳酸盐岩微相分析[J]. 科技导报, 2016, 34(7):103-110 doi: 10.3981/j.issn.1000-7857.2016.07.009
LI Xiao, LIU Na, WU Shijiu, et al. Analysis of carbonate microfacies in Pliocene-Holocene, in Well XK-1, the Xisha Islang, South China Sea [J]. Science & Technology Review, 2016, 34(7): 103-110. doi: 10.3981/j.issn.1000-7857.2016.07.009
[19] 解习农, 谢玉洪, 李绪深, 等. 南海西科1井碳酸盐岩生物礁储层沉积学: 层序地层与沉积演化[M]. 武汉: 中国地质大学出版社, 2016.
XIE Xinong, XIE Yuhong, LI Xushen, et al. Sedimentology of carbonate reef reservoirs in Well Xike-1, South China Sea: Sequence Stratigraphy and Sedimentary Evolution[M]. Wuhan: China University of Geosciences, 2016
[20] Van Kranendonk M J, Webb G E, Kamber B S. Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archaean ocean [J]. Geobiology, 2003, 1(2): 91-108. doi: 10.1046/j.1472-4669.2003.00014.x
[21] Frimmel H E. Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator [J]. Chemical Geology, 2009, 258(3-4): 338-353. doi: 10.1016/j.chemgeo.2008.10.033
[22] Lawrence M G, Greig A, Collerson K D, et al. Rare earth element and yttrium variability in South East Queensland waterways [J]. Aquatic Geochemistry, 2006, 12(1): 39-72. doi: 10.1007/s10498-005-4471-8
[23] Zhao Y Y, Zheng Y F, Chen F K. Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China [J]. Chemical Geology, 2009, 265(3-4): 345-362. doi: 10.1016/j.chemgeo.2009.04.015
[24] Bayon G, German C R, Burton K W, et al. Sedimentary Fe-Mn oxyhydroxides as paleoceanographic archives and the role of aeolian flux in regulating oceanic dissolved REE [J]. Earth and Planetary Science Letters, 2004, 224(3-4): 477-492. doi: 10.1016/j.jpgl.2004.05.033
[25] Byrne R H, Liu X W, Schijf J. The influence of phosphate coprecipitation on rare earth distributions in natural waters [J]. Geochimica et Cosmochimica Acta, 1996, 60(17): 3341-3346. doi: 10.1016/0016-7037(96)00197-4
[26] Zhao M Y, Zheng Y F. A geochemical framework for retrieving the linked depositional and diagenetic histories of marine carbonates [J]. Earth and Planetary Science Letters, 2017, 460: 213-221. doi: 10.1016/j.jpgl.2016.11.033
[27] Zhao M Y, Zheng Y F. Marine carbonate records of terrigenous input into Paleotethyan seawater: Geochemical constraints from Carboniferous limestones [J]. Geochimica et Cosmochimica Acta, 2014, 141: 508-531. doi: 10.1016/j.gca.2014.07.001
[28] Haley B A, Klinkhammer G P, McManus J. Rare earth elements in pore waters of marine sediments [J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1265-1279. doi: 10.1016/j.gca.2003.09.012
[29] Bayon G, Birot D, Ruffine L, et al. Evidence for intense REE scavenging at cold seeps from the Niger Delta margin [J]. Earth and Planetary Science Letters, 2011, 312(3-4): 443-452. doi: 10.1016/j.jpgl.2011.10.008
[30] Kidder D L, Krishnaswamy R, Mapes R H. Elemental mobility in phosphatic shales during concretion growth and implications for provenance analysis [J]. Chemical Geology, 2003, 198(3-4): 335-353. doi: 10.1016/S0009-2541(03)00036-6
[31] Kamber B S, Webb G E, Gallagher M. The rare earth element signal in Archaean microbial carbonate: information on ocean redox and biogenicity [J]. Journal of the Geological Society, 2014, 171(6): 745-763. doi: 10.1144/jgs2013-110
[32] Barnard L A, Macintyre I G, Pierce J W. Possible environmental index in tropical reef corals [J]. Nature, 1974, 252(5480): 219-220. doi: 10.1038/252219a0
[33] Porta G D, Webb G E, McDonald I. REE patterns of microbial carbonate and cements from Sinemurian (Lower Jurassic) siliceous sponge mounds (Djebel Bou Dahar, High Atlas, Morocco) [J]. Chemical Geology, 2015, 400: 65-86. doi: 10.1016/j.chemgeo.2015.02.010
[34] Mc Lennan S M, Bock B, Hemming S R, et al. The roles of provenance sedimentary processes in the geochemistry of sedimentary rocks[M]//Lentz D R. Geological Association of Canada Short Course Notes. Toronto: Geological Association of Canada, 2003.
[35] Sholkovitz E R, Piepgras D J, Jacobsen S B. The pore water chemistry of rare earth elements in Buzzards Bay sediments [J]. Geochimica Et Cosmochimica Acta, 1989, 53(11): 2847-2856. doi: 10.1016/0016-7037(89)90162-2
[36] Webb G E, Kamber B S. Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy [J]. Geochimica Et Cosmochimica Acta, 2000, 64(9): 1557-1565. doi: 10.1016/S0016-7037(99)00400-7
[37] Banner J L, Hanson G N, Meyers W J. Rare earth element and nd isotopic variations in regionally extensive dolomites from the burlington-keokuk formation (Mississippian): implications for REE mobility during carbonate diagenesis [J]. Journal of Sedimentary Research, 1988, 58(3): 415-432.
[38] Kim J H, Torres M E, Haley B A, et al. The effect of diagenesis and fluid migration on rare earth element distribution in pore fluids of the northern Cascadia accretionary margin [J]. Chemical Geology, 2012, 291: 152-165. doi: 10.1016/j.chemgeo.2011.10.010
[39] Shields G, Stille P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites [J]. Chemical Geology, 2001, 175(1-2): 29-48. doi: 10.1016/S0009-2541(00)00362-4
[40] Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater [J]. Geochimica et Cosmochimica Acta, 1996, 60(10): 1709-1725. doi: 10.1016/0016-7037(96)00063-4
[41] Shields G A, Webb G E. Has the REE composition of seawater changed over geological time? [J]. Chemical Geology, 2004, 204(1-2): 103-107. doi: 10.1016/j.chemgeo.2003.09.010
[42] Bau M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect [J]. Contributions to Mineralogy and Petrology, 1996, 123(3): 323-333. doi: 10.1007/s004100050159
[43] Bau M, Dulski P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa [J]. Precambrian Research, 1996, 79(1-2): 37-55. doi: 10.1016/0301-9268(95)00087-9
[44] Tanaka K, Tani Y, Takahashi Y, et al. A specific Ce oxidation process during sorption of rare earth elements on biogenic Mn oxide produced by Acremonium sp. strain KR21-2 [J]. Geochimica et Cosmochimica Acta, 2010, 74(19): 5463-5477. doi: 10.1016/j.gca.2010.07.010
[45] German C R, Elderfield H. Application of the Ce anomaly as a paleoredox indicator: the ground rules [J]. Paleoceanography, 1990, 5(5): 823-833. doi: 10.1029/PA005i005p00823
[46] Ling H F, Chen X, Li D, et al. Cerium anomaly variations in Ediacaran-earliest Cambrian carbonates from the Yangtze Gorges area, South China: implications for oxygenation of coeval shallow seawater [J]. Precambrian Research, 2013, 225: 110-127. doi: 10.1016/j.precamres.2011.10.011
[47] Kawabe I, Kitahara Y, Naito K. Non-chondritic yttrium/holmium ratio and lanthanide tetrad effect observed in pre-Cenozoic limestones [J]. Geochemical Journal, 1991, 25(1): 31-44. doi: 10.2343/geochemj.25.31
[48] Bau M, Dulski P. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater [J]. Chemical Geology, 1999, 155(1-2): 77-90. doi: 10.1016/S0009-2541(98)00142-9
[49] Alibo D S, Nozaki Y. Rare earth elements in seawater: Particle association, shale-normalization, and Ce oxidation [J]. Geochimica et Cosmochimica Acta, 1999, 63(3-4): 363-372. doi: 10.1016/S0016-7037(98)00279-8
[50] Luong L D, Ryuichi S, Nguyen H, et al. Spatial variations in dissolved rare earth element concentrations in the East China Sea water column [J]. Marine Chemistry, 2018, 205: 1-15. doi: 10.1016/j.marchem.2018.07.004
[51] Michard A, Albarède F, Michard G, et al. Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13°N) [J]. Nature, 1983, 303(5920): 795-797. doi: 10.1038/303795a0
[52] German C R, Klinkhammer G P, Edmond J M, et al. Hydrothermal scavenging of rare-earth elements in the ocean [J]. Nature, 1990, 345(6275): 516-518. doi: 10.1038/345516a0
[53] Chen D Z, Qing H R, Yan X, et al. Hydrothermal venting and basin evolution (Devonian, South China): constraints from rare earth element geochemistry of chert [J]. Sedimentary Geology, 2006, 183(3-4): 203-216. doi: 10.1016/j.sedgeo.2005.09.020
[54] Kamber B S, Greig A, Collerson K D. A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia [J]. Geochimica et Cosmochimica Acta, 2005, 69(4): 1041-1058. doi: 10.1016/j.gca.2004.08.020
[55] Wang Q X, Lin Z J, Chen D F. Geochemical constraints on the origin of Doushantuo cap carbonates in the Yangtze Gorges area, South China [J]. Sedimentary Geology, 2014, 304: 59-70. doi: 10.1016/j.sedgeo.2014.02.006
[56] Michard A, Albarède F. The REE content of some hydrothermal fluids [J]. Chemical Geology, 1986, 55(1-2): 51-60. doi: 10.1016/0009-2541(86)90127-0
[57] Alexander B W, Bau M, Andersson P, et al. Continentally-derived solutes in shallow Archean seawater: rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa [J]. Geochimica et Cosmochimica Acta, 2008, 72(2): 378-394. doi: 10.1016/j.gca.2007.10.028
[58] Robbins L J, Lalonde S V, Planavsky N J, et al. Trace elements at the intersection of marine biological and geochemical evolution [J]. Earth-Science Reviews, 2016, 163: 323-348. doi: 10.1016/j.earscirev.2016.10.013
[59] Bau M, Balan S, Schmidt K, et al. Rare earth elements in mussel shells of the Mytilidae family as tracers for hidden and fossil high-temperature hydrothermal systems [J]. Earth and Planetary Science Letters, 2010, 299(3-4): 310-316. doi: 10.1016/j.jpgl.2010.09.011
[60] Johannessen K C, Roost J V, Dahle H, et al. Environmental controls on biomineralization and Fe-mound formation in a low-temperature hydrothermal system at the Jan Mayen Vent Fields [J]. Geochimica et Cosmochimica Acta, 2017, 202: 101-123. doi: 10.1016/j.gca.2016.12.016
[61] Ho K S, Chen J C, Juang W S. Geochronology and geochemistry of late Cenozoic basalts from the Leiqiong area, Southern China [J]. Journal of Asian Earth Sciences, 2000, 18(3): 307-324. doi: 10.1016/S1367-9120(99)00059-0
[62] 孙嘉诗. 南海北部及广东沿海新生代火山活动[J]. 海洋地质与第四纪地质, 1991, 11(3):45-66
SUN Jiashi. Cenozoic volcanic activity in the Northern South China Sea and Guangdong coastal area [J]. Marine Geology & Quaternary Geology, 1991, 11(3): 45-66.
[63] 樊祺诚, 孙谦, 李霓, 等. 琼北火山活动分期与全新世岩浆演化[J]. 岩石学报, 2004, 20(3):533-544 doi: 10.3969/j.issn.1000-0569.2004.03.017
FAN Qicheng, SUN Qian, LI Ni, et al. Periods of volcanic activity and magma evolution of Holocene in North Hainan Island [J]. Acta Petrologica Sinica, 2004, 20(3): 533-544. doi: 10.3969/j.issn.1000-0569.2004.03.017
[64] 冯英辞, 詹文欢, 孙杰, 等. 西沙海域上新世以来火山特征及其形成机制[J]. 热带海洋学报, 2017, 36(3):73-79
FENG Yingci, ZHAN Wenhuan, SUN Jie, et al. The formation mechanism and characteristics of volcanoes in the Xisha waters since Pliocene [J]. Journal of Tropical Oceanography, 2017, 36(3): 73-79.
[65] 邹和平. 试谈南海海盆地壳属性问题—由南海海盆及其邻区玄武岩的比较研究进行讨论[J]. 大地构造与成矿学, 1993, 17(4):293-303
ZOU Heping. On the problem about the crust’s attribution of South China Sea basin-discussion from comparative study on basalts of seamounts in South China Sea basin and the neighboring areas [J]. Geotectonica et Metallogenia, 1993, 17(4): 293-303.
[66] 吕炳全, 王国忠, 全松青, 等. 试论西沙群岛石岛的形成[J]. 地质科学, 1986(1):82-89
LV Bingquan, WANG Guozhong, QUAN Songqing, et al. A preliminary study of the formation of Shidao Island, Xisha Islands [J]. Chinese Journal of Geology, 1986(1): 82-89.