太康隆起上古生界稀土元素地球化学特征及其地质意义

曾秋楠, 张交东, 于炳松, 刘旭锋, 周新桂. 太康隆起上古生界稀土元素地球化学特征及其地质意义[J]. 海洋地质与第四纪地质, 2020, 40(3): 132-143. doi: 10.16562/j.cnki.0256-1492.2019122301
引用本文: 曾秋楠, 张交东, 于炳松, 刘旭锋, 周新桂. 太康隆起上古生界稀土元素地球化学特征及其地质意义[J]. 海洋地质与第四纪地质, 2020, 40(3): 132-143. doi: 10.16562/j.cnki.0256-1492.2019122301
ZENG Qiunan, ZHANG Jiaodong, YU Bingsong, LIU Xufeng, ZHOU Xingui. Geochemical characteristics of Upper Paleozoic mudstone in southern North China Basin and their geological significances[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 132-143. doi: 10.16562/j.cnki.0256-1492.2019122301
Citation: ZENG Qiunan, ZHANG Jiaodong, YU Bingsong, LIU Xufeng, ZHOU Xingui. Geochemical characteristics of Upper Paleozoic mudstone in southern North China Basin and their geological significances[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 132-143. doi: 10.16562/j.cnki.0256-1492.2019122301

太康隆起上古生界稀土元素地球化学特征及其地质意义

  • 基金项目: 国家重大科技专项“大型油气田和煤层气开发”下属课题4任务6“南华北地区海陆交互相页岩气勘查评价应用试验”(2016ZX05034004-006);地质调查项目“南华北盆地上古生界油气地质调查”(DD20190095)
详细信息
    作者简介: 曾秋楠(1988—),女,工程师,主要从事石油地质学研究,E-mail:zqn1001@foxmail.com
  • 中图分类号: P736.4

Geochemical characteristics of Upper Paleozoic mudstone in southern North China Basin and their geological significances

  • 南华北盆地晚古生代海陆交互相暗色泥岩较为发育,是该区主要烃源岩层系之一。本文采用电感耦合等离子体质谱仪和X射线荧光光谱(XRF)对太康隆起西部地区上古生界本溪组、太原组、山西组和下石盒子组28件暗色泥岩、粉砂质泥岩样品进行了稀土元素和微量元素测试,基于稀土元素的稳定性和其对沉积水体变化的高敏感度,结合泥岩有机碳含量及宏观沉积特征,探讨太原组、山西组古沉积环境及其对有机质富集的影响。分析结果表明,太康隆起地区太原组和山西组稀土元素总量高,轻、重稀土元素分异程度相近,明显高于本溪组和下石盒子组,同时山西组具有较弱的Ce负异常和较强的Eu负异常。Ce异常表明本溪组至下石盒子组整体形成于缺氧的还原环境。ΣREE和TOC在垂向上的变化表明古气候条件经历了由干冷向温湿的转变,沉积速率先降低再增大,太原期沉积水体深,沉降速率低,环境稳定,对有机质的富集和保存有着重要的地质意义。

  • 加载中
  • 图 1  研究区位置及早二叠世岩相古地理图 (据曾秋楠,2019[9]修改)

    Figure 1. 

    图 2  南华北盆地太康隆起上古生界泥岩球粒陨石标准化稀土元素分配模式

    Figure 2. 

    图 3  南华北盆地太康隆起上古生界泥岩北美页岩标准化稀土元素分配模式

    Figure 3. 

    图 4  研究区泥岩δCeN-δEuN、δCeN-∑REE、δCeN-(La/Sm)N相关性图解

    Figure 4. 

    图 5  太康隆起尉参1井稀土元素质量分数及地球化学参数垂向分布图

    Figure 5. 

    图 6  太康隆起上古生界泥岩源岩构造背景判别

    Figure 6. 

    图 7  研究区泥岩TOC-∑REE相关性图解

    Figure 7. 

    表 1  太康隆起上古生界泥岩稀土元素质量分数表

    Table 1.  REE content of the Upper Paleozoic samples on Taikang Uplift

    层位样品
    编号
    LaCePrNdSmEuGdTbDyHoErTmYbLuY∑REELREEHREEL/HTOC
    下石盒子组X-147.410612.851.57.821.25.40.8224.560.9743.150.5993.990.55924.6271.374226.7220.05411.310.12
    X-210.223.93.1112.52.841.092.760.5973.80.7462.260.4342.810.42819.787.17553.6413.8353.88
    X-354.41041247.18.931.927.521.186.131.233.490.634.090.60635.4288.626228.3524.8769.180.61
    X-475.714717.468.811.51.858.161.26.231.2740.7414.780.6936.8386.121322.2527.07111.900.55
    X-527.161.57.5827.83.420.4723.060.5613.680.8482.840.5763.780.54820.9164.665127.87215.8938.050.13
    X-653.198.311.340.66.361.175.440.945.441.133.40.6384.130.59631263.544210.8321.7149.710.14
    山西组S-192.317719.977.415.13.4810.81.649.151.895.611.026.510.9450.1472.84385.1837.5610.261.22
    S-286.116119.173.114.42.6510.21.457.361.494.40.7674.620.69144.3431.628356.3530.97811.500.11
    S-387.416319.1655.410.4295.150.7384.140.9623.270.6334.030.55523.6383.417340.33919.47817.47
    S-449.891.510.839.46.130.955.430.9796.091.343.990.77750.70733.9256.793198.5824.3138.170.13
    S-511320124.197.916.22.4111.91.899.812.176.531.137.311.0865561.43454.6141.8210.87
    S-670.31341554.87.950.966.240.9835.091.063.260.5863.770.5328.6333.129283.0121.51913.150.26
    S-748.782.79.940.7111.616.370.9314.931.022.90.5083.330.49127.3242.39194.6120.489.50
    S-868.91301554.181.236.210.9535.291.143.710.6484.350.61631.9332.047277.2322.91712.10
    S-935.763.67.5933.510.51.525.840.8944.450.8552.310.4222.760.39423193.335152.4117.9258.50
    S-1054.810412458.11.456.861.095.91.193.560.6083.950.58232.8281.89225.3523.749.491.04
    S-1174.51441765.511.82.0110.51.759.211.755.010.8445.390.77348.6398.637314.8135.2278.941.84
    S-1293.518721.884.415.32.4411.41.759.491.935.811.026.340.90450.6493.684404.4438.64410.471.46
    S-1381.81651972.612.92.1410.81.769.271.855.510.9666.230.91351.3442.039353.4437.2999.481.94
    太原组T-169.21381660.811.41.668.691.47.731.524.450.774.790.68140.1367.191297.0630.0319.89
    T-273.214316.56311.41.919.841.68.771.684.770.8035.150.72145.2387.544309.0133.3349.272.37
    T-379.915117.464.811.21.679.471.558.351.644.820.8265.230.74646.3404.902325.9732.6329.99
    T-459.111713.5528.861.867.521.155.621.042.930.4763.020.42829.5304.004252.3222.18411.372.18
    T-566.112113.450.28.671.87.281.186.511.273.750.6514.20.62337.5324.134261.1725.46410.261.57
    T-664.311713.449.28.081.516.91.15.971.163.390.5933.880.54434.1311.127253.4923.53710.770.97
    本溪组B-16.8181.978.52.690.6783.380.9396.851.44.060.77250.7237.399.05938.63823.1211.670.13
    B-215.31228.9239.77.950.8014.710.8715.881.314.320.7865.250.76931.3249.867194.67123.8968.150.32
    B-340.496.38.6369.171.976.381.086.241.253.650.7044.930.72631.8249.2192.4424.967.710.52
    北美页岩32.0073.007.9033.005.701.245.200.655.801.043.400.503.100.4827.00173.21152.8420.377.50
    球粒陨石0.310.810.120.600.200.070.260.050.320.070.210.320.210.031.963.582.111.481.43
    PAAS38.279.68.8333.095.551.084.660.7744.680.9912.850.4052.820.433
      注:表中 稀土元素的数据单位为10−6,TOC的单位为%,LREE表示轻稀土元素含量(La-Eu),HREE表示重稀土元素含量(Gd-Lu),∑REE=LREE+HREE+Y元素含量,L/H=LREE/HREE。
    下载: 导出CSV

    表 2  太康隆起上古生界不同层段泥岩稀土元素质量分数

    Table 2.  Comparison of REE contents in mudstone from different formations on Taikang Uplift

    层位∑REE∑LREE∑HREE
    范围均值范围均值范围均值
    下石盒子组87.18~386.12243.5853.64~322.25194.9413.84~27.0720.57
    山西组193.34~561.43371.02152.41~454.61303.117.93~41.8228.61
    太原组304.00~404.90439.82252.32~325.97283.1722.18~33.3327.86
    本溪组99.06~249.87199.3838.64~194.67141.9223.12~24.9623.99
    下载: 导出CSV

    表 3  太康隆起上古生界泥岩稀土元素地球化学参数

    Table 3.  REE geochemical parameters of samples from Upper Paleozoic, Taikang Uplift

    层位样品
    编号
    La/
    Ce
    La/
    Yb
    La/
    Sm
    Gd/
    Yb
    Sm/
    Nd
    (La/
    Sm)N
    (La/
    Yb)N
    (Ce/
    Yb)N
    (La/
    Lu)N
    (Gd/
    Yb)N
    (La/
    Yb)S
    δCeSδEuSδCeNδEuNδCeanom
    下石盒子组X-10.4511.886.061.350.153.918.056.898.211.091.150.940.811.020.600.00
    X-20.433.633.590.980.232.322.462.212.310.790.350.921.711.011.270.01
    X-30.5213.306.091.840.193.939.016.598.691.491.290.891.030.970.76−0.05
    X-40.5115.846.581.710.174.2510.737.9710.621.381.530.880.840.960.62−0.04
    X-50.447.177.920.810.125.114.864.224.790.650.690.930.641.020.480.01
    X-60.5412.868.351.320.165.398.716.178.621.061.250.870.870.960.65−0.05
    山西组S-10.5214.186.111.660.203.949.607.059.501.341.370.901.200.980.89−0.04
    S-20.5318.645.982.210.203.8612.629.0312.061.781.810.860.960.950.71−0.06
    S-30.5421.6916.161.280.0810.4214.6910.4915.241.032.100.870.360.950.26−0.05
    S-40.549.968.121.090.165.246.754.746.820.880.960.860.720.940.54−0.06
    S-50.5615.466.981.630.174.5010.477.1310.131.311.500.840.760.920.57−0.08
    S-60.5218.658.841.660.155.7112.639.2212.841.341.810.900.600.980.44−0.04
    S-70.5914.624.431.910.272.869.916.449.601.551.420.820.840.900.63−0.10
    S-80.5315.848.611.430.155.5610.737.7510.821.151.530.880.770.960.57−0.05
    S-90.5612.933.402.120.312.198.765.978.771.711.250.840.850.920.63−0.08
    S-100.5313.876.771.740.184.369.406.839.111.401.340.880.850.970.63−0.05
    S-110.5213.826.311.950.184.079.366.939.331.571.340.880.790.960.59−0.04
    S-120.5014.756.111.800.183.949.997.6510.011.451.430.900.810.990.60−0.03
    S-130.5013.136.341.730.184.098.896.878.671.401.270.910.801.000.59−0.03
    太原组T-10.5014.456.071.810.193.929.797.479.831.471.400.900.730.990.54−0.03
    T-20.5114.216.421.910.184.149.637.209.831.541.380.900.790.980.59−0.04
    T-30.5315.287.131.810.174.6010.357.4910.361.461.480.880.710.960.53−0.05
    T-40.5119.576.672.490.174.3013.2610.0413.362.011.900.901.000.990.74−0.03
    T-50.5515.747.621.730.174.9210.667.4710.271.401.520.890.990.970.74−0.06
    T-60.5516.577.961.780.165.1311.237.8211.441.441.610.870.890.950.66−0.06
    本溪组B-10.381.362.530.680.321.630.920.930.910.550.131.070.991.170.730.06
    B-20.132.911.920.900.201.241.976.021.930.720.282.270.572.490.430.44
    B-30.428.194.411.290.252.845.555.065.391.050.791.131.131.230.840.05
      注:表中数据单位为10−6;N表示采用球粒陨石标准化(据Boynton, 1984),S表示采用北美页岩标准化(据Haskin等,1968),P表示采用PAAS标准化(据McLenenan, 1989);δCe=CeN/(LaN×PrN1/2;δEu=EuN/(SmN×GdN1/2;δCeanom=lg[3CeN/(2LaN+ωNdN)]。
    下载: 导出CSV
  • [1]

    陈新军, 胡宗全, 李淑筠. 华北南部地区上古生界晚期生烃潜力研究[J]. 天然气地球科学, 2011, 22(4):610-617

    CHEN Xinjun, HU Zongquan, LI Shuyun. Later hydrocarbon generation potential of upper Paleozoic source rock in southern North China [J]. Natural Gas Geoscience, 2011, 22(4): 610-617.

    [2]

    Rimmer S M. Geochemical paleoredox indicators in Devonian-Mississippian black shales, central Appalachian Basin (USA) [J]. Chemical Geology, 2004, 206(3-4): 373-391. doi: 10.1016/j.chemgeo.2003.12.029

    [3]

    Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update [J]. Chemical Geology, 2006, 232(1-2): 12-32. doi: 10.1016/j.chemgeo.2006.02.012

    [4]

    龚晓峰, 何家雄, 吴从康, 等. 中国非常规天然气资源的基本地质地球化学特征及特点[J]. 海洋地质与第四纪地质, 2014, 34(5):95-105

    GONG Xiaofeng, HE Jiaxiong, WU Congkang, et al. Basic geological and geochemical background of unconventional gas resources in China [J]. Marine Geology & Quaternary Geology, 2014, 34(5): 95-105.

    [5]

    郑德顺, 刘思聪, 徐江红, 等. 豫西南淅川地区灯影组白云岩地球化学特征及其古环境意义[J]. 海洋地质与第四纪地质, 2018, 38(4):112-122

    ZHENG Deshun, LIU Sicong, XU Jianghong, et al. Geochemistry of the dolomite from Dengying Formation in Xichuan, southwest Henan Province: Implications for paleoenvironment [J]. Marine Geology & Quaternary Geology, 2018, 38(4): 112-122.

    [6]

    赵重远, 刘池洋. 华北克拉通沉积盆地形成与演化及其油气赋存[M]. 西安: 西北大学出版社, 1990: 45-46.

    ZHAO Chongyuan, LIU Chiyang. Formation, Evolution and Hydrocarbon Occurrence of Sedimentary Basins in North China Craton[M]. Xi’an: Northwest University Press, 1990: 45-46.

    [7]

    张交东, 曾秋楠, 周新桂, 等. 南华北盆地太康隆起西部新区上古生界天然气成藏条件与钻探发现[J]. 天然气地球科学, 2017, 28(11):1637-1649

    ZHANG Jiaodong, ZENG Qiunan, ZHOU Xingui, et al. Drilling achievements and gas accumulation in the Upper Paleozoic in western new area of Taikang Uplift, southern North China Basin [J]. Natural Gas Geoscience, 2017, 28(11): 1637-1649.

    [8]

    徐汉林, 赵宗举, 吕福亮, 等. 南华北地区的构造演化与含油气性[J]. 大地构造与成矿学, 2004, 28(4):450-463 doi: 10.3969/j.issn.1001-1552.2004.04.012

    XU Hanlin, ZHAO Zongju, LV Fuliang, et al. Tectonic evolution of the Nanhuabei Area and analysis about its petroleum potential [J]. Geotectonica et Metallogenia, 2004, 28(4): 450-463. doi: 10.3969/j.issn.1001-1552.2004.04.012

    [9]

    曾秋楠, 张交东, 于炳松, 等. 太康隆起上古生界海陆交互相页岩气地质条件分析[J]. 特种油气藏, 2019, 26(3):49-55 doi: 10.3969/j.issn.1006-6535.2019.03.009

    ZENG Qiunan, ZHANG Jiaodong, YU Bingsong, et al. Shale gas geology analysis of the Upper Paleozoic marine-continental interaction facies in Taikang Uplift [J]. Special Oil & Gas Reservoirs, 2019, 26(3): 49-55. doi: 10.3969/j.issn.1006-6535.2019.03.009

    [10]

    陈亮, 刘春莲, 庄畅, 等. 三水盆地古近系下部湖相沉积的稀土元素地球化学特征及其古气候意义[J]. 沉积学报, 2009, 27(6):1155-1162

    CHEN Liang, LIU Chunlian, ZHUANG Chang, et al. Rare earth element records of the lower paleogene sediments in the Sanshui Basin and their paleoclimate implications [J]. Acta Sedimentologica Sinica, 2009, 27(6): 1155-1162.

    [11]

    Boynton W V. Cosmochemistry of the rare earth elements[M]//Henderson P. Rare earth Element Geochemistry. Amsterdam: Elsevier, 1984: 64-114.

    [12]

    Haskin L A, Haskin M A, Frey F A, et al. Relative and absolute terrestrial abundances of the rare earths[M]//Ahrens L H. Origin and Distribution of the Elements. New York: Pergamon Press, 1968: 889-912.

    [13]

    McLennan S M. Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes [J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1): 169-200.

    [14]

    Shields G, Stille P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: An isotopic and REE study of Cambrian phosphorites [J]. Chemical Geology, 2001, 175(1-2): 29-48. doi: 10.1016/S0009-2541(00)00362-4

    [15]

    王中刚, 于学元, 赵振华. 稀土元素地球化学[M]. 北京: 科学出版社, 1989: 272-273.

    WANG Zhonggang, YU Xueyuan, ZHAO Zhenhua. Rare Earth Element Geochemistry[M]. Beijing: Science Press, 1989: 272-273.

    [16]

    Elderfield H, Sholkovitz E R. Rare earth elements in the pore waters of reducing nearshore sediments [J]. Earth and Planetary Science Letters, 1987, 82(3-4): 280-288. doi: 10.1016/0012-821X(87)90202-0

    [17]

    袁伟, 柳广弟, 罗文斌. 鄂尔多斯盆地延长组长7段沉积速率及其对烃源岩有机质丰度的影响[J]. 西安石油大学学报: 自然科学版, 2016, 31(5):20-26

    YUAN Wei, LIU Guangdi, LUO Wenbin. Deposition rate of the seventh member of yangchang formation, ordos basin and its impact on organic matter abundance of hydrocarbon source rock [J]. Journal of Xi’an Shiyou University: Natural Science, 2016, 31(5): 20-26.

    [18]

    Taylor S R, McLennan S M. The continental crust: its composition and evolution [J]. Oxford: Blackwell, 1985: 312.

    [19]

    Bhatia M R. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: provenance and tectonic control [J]. Sedimentary Geology, 1985, 45(1-2): 97-113. doi: 10.1016/0037-0738(85)90025-9

    [20]

    McLennan S M, Hemming S, McDaniel D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[M]//Johnson M J, Basu A. Processes Controlling the Composition of Clastic Sediments. Boulder, Colorado: Geological Society of America, 1993: 21-40, doi: 10.1130/SPE284-p21.

    [21]

    Taylor S R, Rudnick R L, McLennan S M, et al. Rare earth element patterns in Archean high-grade metasediments and their tectonic significance [J]. Geochimica et Cosmochimica Acta, 1986, 50(10): 2267-2279. doi: 10.1016/0016-7037(86)90081-5

    [22]

    Condie K C. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales [J]. Chemical Geology, 1993, 104(1-4): 1-37. doi: 10.1016/0009-2541(93)90140-E

    [23]

    李树霞, 向芳, 张瑶, 等. 鄂尔多斯盆地南缘晚古生代沉积物源及其对秦岭造山带北部演化的指示[J]. 成都理工大学学报: 自然科学版, 2017, 44(5):589-601

    LI Shuxia, XIANG Fang, ZHANG Yao, et al. Provenance analysis of the late Paleozoic sediments in south margin of the Ordos Basin and its indication to evolution of the north of Qinling Orogenic Belt in China [J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2017, 44(5): 589-601.

    [24]

    史基安, 郭雪莲, 王琪, 等. 青海湖QH1孔晚全新世沉积物稀土元素地球化学与气候环境关系探讨[J]. 湖泊科学, 2003, 15(1):28-34 doi: 10.3321/j.issn:1003-5427.2003.01.004

    SHI Ji’an, GUO Xuelian, WANG Qi, et al. Geochemistry of REE in QH1 sediments of Qinghai lake since late holocene and its paleoclimatic significance [J]. Journal of Lake Science, 2003, 15(1): 28-34. doi: 10.3321/j.issn:1003-5427.2003.01.004

    [25]

    黄麒, 孟昭强. 干寒地区古气候变化特征之研究I. 古气候波动模式的有机地球化学方法[J]. 海洋与湖沼, 1991, 22(6):547-552

    HUANG Qi, MENG Zhaoqiang. Study on features of evolution of Palaeolimate in arid and cold region I. Organic geochemistry method for modelling palaeoclimatic fluctuation [J]. Oceanologia et Limnologia Sinica, 1991, 22(6): 547-552.

  • 加载中

(7)

(3)

计量
  • 文章访问数:  1891
  • PDF下载数:  24
  • 施引文献:  0
出版历程
收稿日期:  2019-12-23
修回日期:  2020-03-11
刊出日期:  2020-06-25

目录