基于岩石物理模拟与声学实验识别孔隙—裂隙充填型水合物

景鹏飞, 胡高伟, 卜庆涛, 陈杰, 万义钊, 毛佩筱. 基于岩石物理模拟与声学实验识别孔隙—裂隙充填型水合物[J]. 海洋地质与第四纪地质, 2020, 40(6): 208-218. doi: 10.16562/j.cnki.0256-1492.2019122501
引用本文: 景鹏飞, 胡高伟, 卜庆涛, 陈杰, 万义钊, 毛佩筱. 基于岩石物理模拟与声学实验识别孔隙—裂隙充填型水合物[J]. 海洋地质与第四纪地质, 2020, 40(6): 208-218. doi: 10.16562/j.cnki.0256-1492.2019122501
JING Pengfei, HU Gaowei, BU Qingtao, CHEN Jie, WAN Yizhao, MAO Peixiao. Identification of pore-filling and fracture-filling hydrate by petrophysical simulation and acoustic experiment[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 208-218. doi: 10.16562/j.cnki.0256-1492.2019122501
Citation: JING Pengfei, HU Gaowei, BU Qingtao, CHEN Jie, WAN Yizhao, MAO Peixiao. Identification of pore-filling and fracture-filling hydrate by petrophysical simulation and acoustic experiment[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 208-218. doi: 10.16562/j.cnki.0256-1492.2019122501

基于岩石物理模拟与声学实验识别孔隙—裂隙充填型水合物

  • 基金项目: 国家实验室开放基金“南海北部水合物多分支孔降压开采方法研究”(QNLM2016ORP0207);国家重点研发计划项目“水合物试采目标综合评价技术应用示范”(2017YFC0307602);国家自然科学基金 “南海富含有孔虫沉积物中水合物形成及其声学响应机理研究”(41474119),“裂隙充填型水合物声学响应机理研究”(41906067);中国博士后科学基金“甲烷通量对南海沉积物中水合物形成及声学特性影响研究”(2018M632634);山东省自然科学基金“基于声学-CT联合探测的水合物分解及其声学响应机理研究”(ZR2019BD051);山东省博士后创新项目“裂隙充填型天然气水合物声学响应研究”(201902050)
详细信息
    作者简介: 景鹏飞(1994—),男,硕士研究生,从事天然气水合物地球物理研究,E-mail: jingpf1994@163.com
    通讯作者: 胡高伟(1982—),男,博士,副研究员,从事天然气水合物岩石物理与开采基础研究,E-mail: hgw-623@163.com
  • 中图分类号: P738

Identification of pore-filling and fracture-filling hydrate by petrophysical simulation and acoustic experiment

More Information
  • 孔隙充填和裂隙充填是自然界中水合物赋存的两种基本形态,其类型判别对储量评价、钻井安全以及环境评估均具有重要影响。本文模拟南海孔隙充填和裂隙充填两种类型水合物储层,利用岩石物理模型和声学模拟实验获取声波速度和密度,对两种类型的识别方法进行了探索。结果显示,孔隙充填和裂隙充填型水合物沉积体系的纵波速度都随水合物体积分数的增大而增大,密度都随水合物体积分数增大而减小。将速度与密度参数结合计算两种类型水合物阻抗和 < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > $\rho {\sqrt V _{\rm{p}}}$ < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M5.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M4.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M3.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M2.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M1.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M1.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M1.png'/ > 属性表明:对于含孔隙充填型水合物沉积体系的 < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > $\rho {\sqrt V _{\rm{p}}}$ < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M5.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M4.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M3.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M2.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M1.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M1.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M1.png'/ > 属性,岩石物理模拟的计算结果与实验结果斜率均为正;而对于含裂隙充填型水合物沉积物的 < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > $\rho {\sqrt V _{\rm{p}}}$ < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M5.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M4.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M3.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M2.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M1.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M1.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M1.png'/ > 属性,其斜率均为负。但当水合物体积分数小于40%时,含裂隙充填型水合物沉积物的理论计算结果与实验值存在偏差,因此,在计算低体积分数水合物的 < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > $\rho {\sqrt V _{\rm{p}}}$ < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M5.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M4.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M3.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M2.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M1.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M1.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M1.png'/ > 属性时,需要对模型进行适当修正。本文利用 < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > < span class="inline-formula-span" > $\rho {\sqrt V _{\rm{p}}}$ < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M5.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M4.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M3.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M2.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M1.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M1.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='2019122501_M1.png'/ > 属性对GMGS2航次16井赋存的孔隙充填和裂隙充填型水合物进行了验证,结果表明井中上部分赋存的水合物以裂隙充填型为主,底部以孔隙充填型为主,验证结果与实际钻探结果一致,表明该方法用于识别水合物类型是可行的。

  • 加载中
  • 图 1  裂隙充填型水合物的类型[20]

    Figure 1. 

    图 2  EMT、BGTL、STPE模型计算的含孔隙充填型水合物的密度

    Figure 2. 

    图 3  EMT、BGTL、STPE模型计算的含孔隙充填型水合物的纵波速度

    Figure 3. 

    图 4  裂隙充填型水合物端元模型[23]

    Figure 4. 

    图 5  横向各向同性理论计算的含裂隙充填型水合物的密度和纵波速度

    Figure 5. 

    图 6  天然气水合物声学模拟实验装置

    Figure 6. 

    图 7  南海沉积物中孔隙充填型水合物的纵波速度和密度

    Figure 7. 

    图 8  裂隙充填型水合物合成实验装置

    Figure 8. 

    图 9  岩心夹持测试波速装置

    Figure 9. 

    图 10  含裂隙充填型水合物的南海沉积介质的密度与纵波速度

    Figure 10. 

    图 11  岩石物理模拟和实验测试的纵波速度

    Figure 11. 

    图 12  岩石物理模拟和实验测试的孔隙充填型和裂隙充填型水合物的阻抗

    Figure 12. 

    图 13  岩石物理模拟和实验测试的孔隙充填型和裂隙充填型水合物的$\rho {\sqrt V _{\rm{p}}}$属性

    Figure 13. 

    图 14  GMGS2-16井上部含裂隙充填型水合物储层$\rho {\sqrt V _{\rm{p}}}$属性差值结果

    Figure 14. 

    图 15  GMGS2-16井下部含孔隙充填型水合物储层$\rho {\sqrt V _{\rm{p}}}$属性差值结果

    Figure 15. 

    图 A-1  水合物在沉积物中的3种赋存形态

    Figure A-1. 

    表 1  南海泥质黏土的体积模量(K)、剪切模量(G)、密度(ρ)和含量(C[22]

    Table 1.  The bulk modulus (K), shear modulus (G), density (ρ) and content (C) of the silty clay in the South China Sea [22]

    沉积物组分K/GPaG/GPaρ/(g/cm3C/%
    方解石76.8322.7114
    石英36.6452.6528
    长石76262.7112
    云母62412.6826
    黏土20.96.852.5820
    水合物5.62.40.9
    2.501.03
    下载: 导出CSV
  • [1]

    Ghosh R, Sain K, Ojha M. Effective medium modeling of gas hydrate-filled fractures using the sonic log in the Krishna-Godavari basin, offshore eastern India [J]. Journal of Geophysical Research, 2010, 115(B6): B06101.

    [2]

    Hu G W, Ye Y G, Zhang J, et al. Acoustic response of gas hydrate formation in sediments from South China Sea [J]. Marine and Petroleum Geology, 2014, 52: 1-8. doi: 10.1016/j.marpetgeo.2014.01.007

    [3]

    王吉亮, 王秀娟, 钱进. 裂隙充填型天然气水合物的各向异性分析及饱和度估算:以印度东海岸NGHP01-10D井为例[J]. 地球物理学报, 2013, 56(4):1312-1320 doi: 10.6038/cjg20130425

    WANG Jiliang, WANG Xiujuan, QIAN Jin, et al. Anisotropic analysis and saturation estimation of gas hydrate filled in fractures: a case of site NGHP01-10D, offshore eastern India [J]. Chinese Journal of Geophysics, 2013, 56(4): 1312-1320. doi: 10.6038/cjg20130425

    [4]

    景鹏飞, 胡高伟, 卜庆涛. 天然气水合物地球物理勘探技术的应用及发展[J]. 地球物理学进展, 2019, 34(5):2046-2064 doi: 10.6038/pg2019CC0259

    JING Pengfei, HU Gaowei, BU Qingtao, et al. Application and development of geophysical technology in gas hydrate exploration [J]. Progress in Geophysics, 2019, 34(5): 2046-2064. doi: 10.6038/pg2019CC0259

    [5]

    钱进, 王秀娟, 董冬冬, 等. 裂隙充填型天然气水合物的地震各向异性数值模拟[J]. 海洋地质与第四纪地质, 2015, 35(4):149-154

    QIAN Jin, WANG Xiujuan, DONG Dongdong, et al. Seismic anisotropic modeling of fracture-filling gas hydrate [J]. Marine Geology & Quaternary Geology, 2015, 35(4): 149-154.

    [6]

    Holland M, Schultheiss P, Roberts J, et al. Observed gas hydrate morphologies in marine sediments[C]//Proceedings of the 6th International Conference on Gas Hydrate. Vancouver, British Columbia, 2008.

    [7]

    Wang X J, Hutchinson D R, Wu S G, et al. Elevated gas hydrate saturation within silt and silty clay sediments in the Shenhu area, South China Sea [J]. Journal of Geophysical Research, 2011, 116(B5): B05102.

    [8]

    Collett T S, Lee M W, Zyrianova M V, et al. Gulf of Mexico gas hydrate joint industry project leg II logging-while-drilling data acquisition and analysis [J]. Marine and Petroleum Geology, 2012, 34(1): 41-61. doi: 10.1016/j.marpetgeo.2011.08.003

    [9]

    Horozal S, Lee G H, Yi B Y, et al. Seismic indicators of gas hydrate and associated gas in the Ulleung Basin, East Sea (Japan Sea) and implications of heat flows derived from depths of the bottom-simulating reflector [J]. Marine Geology, 2009, 258(1-4): 126-138. doi: 10.1016/j.margeo.2008.12.004

    [10]

    Collett T S, Scientific Party N. Occurrence of marine gas hydrates in the Indian continental margin: results of the Indian National Gas Hydrate Program (NGHP) expedition 01[C]//Proceedings of American Geophysical Union, Fall Meeting 2007. Washington, DC: American Geophysical Union, 2007.

    [11]

    Cook A, Goldberg D. Stress and gas hydrate-filled fracture distribution, Krishna-Godavari basin, India[C]//Proceedings of the 6th International Conference on Gas Hydrate. Vancouver, British Columbia, 2008.

    [12]

    Liu T, Liu X W. Identification of morphologies of gas hydrate distribution based on AVA analysis [J]. Geophysics, 2018, 83(3): B143-B154. doi: 10.1190/geo2017-0072.1

    [13]

    Yang S X, Zhang G X, Zhang M, et al. A complex gas hydrate system in the Dongsha area, South China Sea: results from drilling expedition GMGS2[C]//Proceeding of the 8th International Conference on Gas Hydrate. Beijing: China Geological Survey, 2014.

    [14]

    Lee M W, Collett T S. Gas hydrate and free gas saturations estimated from velocity logs on hydrate ridge, offshore Oregon, USA[M]//Tréhu A M, Bohrmann G, Torres M E, et al. Proceedings of the Ocean Drilling Program, Scientific Results. Texas College Station, 2006.

    [15]

    戴丹青, 刘学伟. 根据BSR界面RVF特性判断水合物的赋存状态[C]//2015年“海洋地质、矿山资源与环境”学术研讨会论文集. 广州: 中国地质学会, 中国海洋学会, 中国矿物岩石地球化学学会, 广东省地质学会, 2015.

    DAI Danqing, LIU Xuewei. Identification of hydrate occurrence state according to the characteristics of RVF at BSR interface[C]//Conference on Marine Geology & Mining Resources and Environment. 2015.

    [16]

    Lee M W, Collett T S. Characteristics and interpretation of fracture-filled gas hydrate – An example from the Ulleung Basin, East Sea of Korea [J]. Marine and Petroleum Geology, 2013, 47: 168-181. doi: 10.1016/j.marpetgeo.2012.09.003

    [17]

    Liu T, Liu X W, Zhu T Y. Joint analysis of P-wave velocity and resistivity for morphology identification and quantification of gas hydrate [J]. Marine and Petroleum Geology, 2020, 112: 104036. doi: 10.1016/j.marpetgeo.2019.104036

    [18]

    Sriram G, Dewangan P, Ramprasad T, et al. Anisotropic amplitude variation of the bottom-simulating reflector beneath fracture-filled gas hydrate deposit [J]. Journal of Geophysical Research, 2013, 118(5): 2258-2274.

    [19]

    Liu T, Liu X W. Identifying the morphologies of gas hydrate distribution using P-wave velocity and density: a test from the GMGS2 expedition in the South China Sea [J]. Journal of Geophysics and Engineering, 2018, 15(3): 1008-1022. doi: 10.1088/1742-2140/aaaba1

    [20]

    Daigle H, Dugan B. Origin and evolution of fracture-hosted methane hydrate deposits [J]. Journal of Geophysical Research, 2010, 115(B11).

    [21]

    胡高伟. 南海沉积物的水合物声学特性模拟实验研究[D]. 中国地质大学博士学位论文, 2010.

    HU Gaowei. Experimental study on acoustic responses of gas hydrates to sediments from South China Sea[D]. Doctor Dissertation of China University of Geosciences, 2010.

    [22]

    林霖, 梁劲, 郭依群, 等. 利用声波速度测井估算海域天然气水合物饱和度[J]. 测井技术, 2014, 38(2):234-238

    LIN Lin, LIANG Jin, GUO Yiqun, et al. Estimating saturation of gas hydrates within marine sediments using sonic log data [J]. Well Logging Technology, 2014, 38(2): 234-238.

    [23]

    Lee M W, Collett T S. Gas hydrate saturations estimated from fractured reservoir at Site NGHP-01-10, Krishna-Godavari Basin, India [J]. Journal of Geophysical Research, 2009, 114(B7): B07102.

    [24]

    Sha Z B, Liang J Q, Zhang G X, et al. A seepage gas hydrate system in northern South China Sea: Seismic and well log interpretations [J]. Marine Geology, 2015, 366: 69-78. doi: 10.1016/j.margeo.2015.04.006

    [25]

    Helgerud M B, Dvorkin J, Nur A, et al. Elastic-wave velocity in marine sediments with gas hydrates: effective medium modeling [J]. Geophysical Research Letters, 1999, 26(13): 2021-2024. doi: 10.1029/1999GL900421

    [26]

    Ecker C. Seismic characterization of methane hydrate structures[D]. Doctor Dissertation of Stanford University, 1998.

    [27]

    Nur A, Mavko G, Dvorkin J, et al. Critical porosity: a key to relating physical properties to porosity in rocks [J]. The Leading Edge, 1998, 17(3): 357-362. doi: 10.1190/1.1437977

    [28]

    Dvorkin J, Nur A. Rock physics for characterization of gas hydrates[M]//Howell D G. The Future of Energy Gases. Washington: United States Government Printing Office, 1993.

    [29]

    Dvorkin J, Prasad M, Sakai A, et al. Elasticity of marine sediments: Rock physics modeling [J]. Geophysical Research Letters, 1999, 26(12): 1781-1784. doi: 10.1029/1999GL900332

    [30]

    Lee M W. Biot-Gassmann theory for velocities of gas hydrate-bearing sediments [J]. Geophysics, 2002, 67(6): 1711-1719. doi: 10.1190/1.1527072

    [31]

    Hill R. The elastic behaviour of a crystalline aggregate [J]. Proceedings of the Physical Society. Section A, 1952, 65(5): 349-354. doi: 10.1088/0370-1298/65/5/307

    [32]

    Lee M W, Waite W F. Estimating pore-space gas hydrate saturations from well log acoustic data [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(7): Q07008.

    [33]

    Mindlin R D. Compliance of elastic bodies in contact [J]. Journal of Applied Mechanics, 1949, 16: 259-268.

    [34]

    White J E. Seismic Waves: Radiation, Transmission, and Attenuation[M]. New York: McGraw Hill, 1965.

    [35]

    Thomsen L. Weak elastic anisotropy [J]. Geophysics, 1986, 51(10): 1954-1966. doi: 10.1190/1.1442051

  • 加载中

(16)

(1)

计量
  • 文章访问数:  7236
  • PDF下载数:  35
  • 施引文献:  0
出版历程
收稿日期:  2019-12-25
修回日期:  2020-03-10
刊出日期:  2020-12-25

目录