Application of acoustic unmanned surface vehicle to submarine geomorphology survey in shallow water
-
摘要:
水面无人艇(USV,Unmanned Surface Vehicle)具有吃水浅、灵活机动、安全高效的特点和优势,日益成为浅水调查的重要手段。对于常规船只和考察人员不能到达的浅水环境的调查,无人艇具有填补甚至替代的价值和意义。C-Worker 4水面无人艇平台搭载了多波束测深、侧扫声呐、浅层剖面声学系统,运用脉冲同步控制和发射频率差异化配置的方法实现数据同步采集,旨在提高调查效率、优化调查方法和节约成本。基于2019年在海南岛澄迈湾1.2~22 m浅水环境的调查数据,处理和分析评估表明其采集数据可靠性高,能清晰识别海底沙波、波纹、礁石、埋藏河道、港池、航道、拖痕等微地貌单元。研究证实水面无人艇搭载多源声学系统同步测量可提供精细、立体、可靠的海底地貌基础资料,服务于海岸带地质调查、资源开发、工程建设、水运交通和国防安全等。
Abstract:Unmanned surface vehicle (USV) is an emerging platform for the oceanic survey. Small and medium-sized USVs have the advantages of the small draft, flexible maneuverability, safety, and efficiency, and increasingly become an important means for shallow water investigation. For the measurement and investigation of the shallow water environment that can not be reached by conventional ships and surveyors, USVs can play a significant role as an alternative to replace other facilities. This article is based on the C-Worker 4 USV platform, integrated with multi-beam sounding, side-scan sonar, sub-bottom profiler, and other acoustic equipment, using pulse delay time technology to acquire data simultaneously, aiming to improve the efficiency and optimize the program and save costs. In 2019, USV was applied in Chengmai Bay, Hainan Island to investigate submarine geomorphology in a shallow water environment with a water depth of 1.2~22 m. Data processing, analysis and evaluation showed that the data acquired by USV is highly reliable and can be used to identify the natural geomorphological units such as seabed reef, sand wave, sand ripple, buried channel, and the artificial geomorphology units such as waterway, channel filling deposits and submarine pipelines. The research in this paper confirms that the USV with a variety of acoustic equipment can provide precise, three-dimensional, and reliable basic data of submarine geomorphology, serving coastal geological surveys, resource exploration, engineering construction, maritime transportation, and national defense security.
-
表 1 水面无人艇任务载荷主要调查参数
Table 1. Main parameters of surveying system of USV
参数 多波束 侧扫声呐 浅地层剖面 设备型号 T20P UUV3500 SES2000 Smart 中心频率 260 kHz单频 455/900 kHz双频 100/10 kHz双频 量程 据水深变化,一般为水深的3~4倍 单侧50 m 30 m 同步模式 被动 主动(触发信号源) 被动 脉冲类型 CW Chirp 参量 表 2 调查区识别的地貌类型及其声学特征
Table 2. Geomorphologic types and acoustic characteristics identified in the survey area
地貌类型 微地貌单元 声学特征 多波束测深 侧扫声呐 浅层剖面 自然地貌 海底沙波 波状起伏,韵律新月形条带状 海底线起伏,脊线两侧背散射呈条带状强弱变化 波状起伏,通常波形不对称 海底波纹 难以观测 背散射强弱相间,呈韵律条带状 波状起伏 海底礁石 不规则凸起 背散射强,周围较弱,与礁石展布形态有关 不规则凸起,下部地层为模糊反射 埋藏河道 无法观测 无法观测 U或V形下凹,上覆层状充填物 人工地貌 海底麻坑/坑槽 U或V形下凹,边界不规则 坑槽背散射弱,四周相对较强 海底线呈U或V形下凹,通常下部存在层状反射 航道/港池 下凹负地形,边界规则 边界处背散射明显强或弱 海底线下凹,边界规则 海底拖痕 难以观测 明显链状,拖痕处背散射弱,两侧相对较强 小型V形下凹状 -
[1] 蔡锋. 中国近海海洋: 海底地形地貌[M]. 北京: 海洋出版社, 2013.
CAI Feng. China's Offshore Ocean: Submarine Geomorphology[M]. Beijing: China Ocean Press, 2013.
[2] 吴自银. 高分辨率海底地形地貌——探测处理理论与技术[M]. 北京: 科学出版社, 2017.
WU Ziyin. High Resolution Submarine Geomorphology: Exploration and Processing Theory and Technology[M]. Beijing: Science Press, 2017.
[3] 夏真, 林进清, 郑志昌. 海岸带海洋地质环境综合调查方法[J]. 地质通报, 2005, 24(6):570-575
XIA Zhen, LIN Jinqing, ZHENG Zhichang. Integrated investigation methods for the marine geo-environment in coastal zones [J]. Geological Bulletin of China, 2005, 24(6): 570-575.
[4] 李家良. 水面无人艇发展与应用[J]. 火力与指挥控制, 2012, 37(6):203-207
LI Jialiang. Development and application of unmanned surface vehicle [J]. Fire Control & Command Control, 2012, 37(6): 203-207.
[5] 周玺, 高东华, 马玉林. 无人水面艇在信息战中的应用[J]. 电子对抗, 2006(4):45-49
ZHOU Xi, GAO Donghua, MA Yulin. Application of unmanned surface vessel in information warfare [J]. Electronic Warfare, 2006(4): 45-49.
[6] 陈锋. 无人艇应用于海洋环境监测及海洋管理的前景与展望[J]. 机电设备, 2015, 32(6):21-24
CHEN Feng. The application prospects for unmanned surface vehicle in marine management and law enforcement of marine surveillance [J]. Mechanical and Electrical Equipment, 2015, 32(6): 21-24.
[7] 熊亚洲, 张晓杰, 冯海涛, 等. 一种面向多任务应用的无人水面艇[J]. 船舶工程, 2012, 34(1):16-19
XIONG Yazhou, ZHANG Xiaojie, FENG Haitao, et al. An unmanned surface vehicle for multi-mission applications [J]. Ship Engineering, 2012, 34(1): 16-19.
[8] 董超, 刘蔚, 李雪, 等. 无人水面艇海洋调查国内应用进展与展望[J]. 导航与控制, 2019, 18(1):1-9, 43
DONG Chao, LIU Wei, LI Xue, et al. Marine survey with unmanned surface vehicle: application progress and prospect in China [J]. Navigation and Control, 2019, 18(1): 1-9, 43.
[9] 马忠丽, 文杰, 梁秀梅, 等. 无人艇视觉系统多类水面目标特征提取与识别[J]. 西安交通大学学报, 2014, 48(8):60-66
MA Zhongli, WEN Jie, LIANG Xiumei, et al. Extraction and recognition of features from multi-types of surface targets for visual systems in unmanned surface vehicle [J]. Journal of Xi'an Jiaotong University, 2014, 48(8): 60-66.
[10] 方中华, 褚宏宪, 冯京, 等. 无人船艇在海洋地质调查中的应用及展望[J]. 海洋地质前沿, 2020, 36(3):72-77
FANG Zhonghua, CHU Hongxian, FENG Jing, et al. Application and prospect of unmanned surface vehicle in marine geological survey [J]. Marine Geology Frontiers, 2020, 36(3): 72-77.
[11] 王宝灿, 陈沈良, 龚文平, 等. 海南岛港湾海岸的形成与演变[M]. 北京: 海洋出版社, 2006: 65-67.
WANG Baocan, CHEN Shenliang, GONG Wenping, et al. Formation and Evolution of Harbor Coast in Hainan Island[M]. Beijing: China Ocean Press, 2006: 65-67.
[12] 吴海京, 年永吉. 南海东部几种典型海底地貌特征的研究与认识[J]. 地球物理学进展, 2017, 32(2):919-926
WU Haijing, NIAN Yongji. Research and cognition for several typical seabed features in the eastern of the South China Sea [J]. Progress in geophysics, 2017, 32(2): 919-926.
[13] 曾克峰, 刘超, 程璜鑫. 地貌学及第四纪地质学教程[M]. 武汉: 中国地质大学出版社, 2014: 169-171.
ZENG Kefeng, LIU Chao, CHENG Huangxin. Course of Geomorphology and Quaternary Geology[M]. Wuhan: China University of Geosciences Press, 2014: 169-171.
[14] 傅人康, 张匡华, 宋家伟. 利用侧扫声呐和单道地震提取海底微地貌的方法[J]. 海洋开发与管理, 2008, 35(4):109-112
FU Renkang, ZHANG Kuanghua, SONG Jiawei. The methods of extracting seabed microtopography information from side scan sonar pictures and single-channel seismic profiles [J]. Ocean Development and Management, 2008, 35(4): 109-112.
[15] Applanix. Applanix POS MV V5 installation and operation guide[Z]. 2017: 161-162.
[16] ASV. C-worker 4 user handbook-October 2019[Z]. 2019: 16.
[17] 冯宏, 韩礼波. 基于FPGA的声学同步控制器设计实现[J]. 声学与电子工程, 2017(1):42-44
FENG Hong, HAN Libo. Design and implementation of acoustic synchronous controller based on FPGA [J]. Acoustics and Electronics Engineering, 2017(1): 42-44.
[18] 刘振夏, 夏东兴. 中国近海潮流沉积沙体[M]. 北京: 海洋出版社, 2004: 38.
LIU Zhenxia, XIA Dongxing. Tidal Sands in China Seas[M]. Beijing: China Ocean Press, 2004: 38.
[19] Stide A H. Offshore Tidal Sands: Processes and Deposits[M]. London: Chapman and Hall, 1982: 188.
[20] 蒋廷臣, 王晓松, 安俊杰, 等. 利用浅剖探测数据提取航道淤泥层及其程序实现[J]. 淮海工学院学报: 自然科学版, 2008, 27(1):55-59
JIANG Tingchen, WANG Xiaosong, AN Junjie, et al. Extraction of channel silt layer by shallow detection data and program implementation [J]. Journal of Huaihai Institute of Technology: Natural Science Edition, 2008, 27(1): 55-59.