南海北部陵水陆坡重力流沉积调查与分析

冯湘子, 朱友生. 南海北部陵水陆坡重力流沉积调查与分析[J]. 海洋地质与第四纪地质, 2020, 40(5): 25-35. doi: 10.16562/j.cnki.0256-1492.2019123001
引用本文: 冯湘子, 朱友生. 南海北部陵水陆坡重力流沉积调查与分析[J]. 海洋地质与第四纪地质, 2020, 40(5): 25-35. doi: 10.16562/j.cnki.0256-1492.2019123001
FENG Xiangzi, ZHU Yousheng. Investigation of gravity flow deposits on the Lingshui slope of the northern South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 25-35. doi: 10.16562/j.cnki.0256-1492.2019123001
Citation: FENG Xiangzi, ZHU Yousheng. Investigation of gravity flow deposits on the Lingshui slope of the northern South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 25-35. doi: 10.16562/j.cnki.0256-1492.2019123001

南海北部陵水陆坡重力流沉积调查与分析

  • 基金项目: 陵水17-2气田群开发工程场地详细勘察
详细信息
    作者简介: 冯湘子(1986—),男,硕士,主要从事海洋工程勘察,E-mail:fengxz@cosl.com.cn
  • 中图分类号: P736.21

Investigation of gravity flow deposits on the Lingshui slope of the northern South China Sea

  • 深水沉积环境复杂、浅层沉积物土质差异明显、重力流沉积多样,对深水海洋工程水下设施的设计、施工和运营安全提出了新的挑战。通过二维/三维数字地震等方式能够识别出数百米的滑坡体,但是对于海洋工程上所关注的浅层海底的重力流沉积体系,其分析能力有限。以南海北部陵水区块为例,通过船载多波束的后向散射成果、自主水下航行器(AUV)搭载的浅地层剖面资料,结合重力活塞取样器(JPC)取样和碳14测年(AMS14C)等资料综合分析,对深水海底浅层重力流沉积的形成和分布模式进行探讨。研究表明,船载多波束后向散射图能够较为准确地识别区域性重力流沉积区域,以及表层沉积物的变化,AUV搭载的浅地层剖面能够精确地识别地层的纵向差异,JPC取样能够获取重力流沉积样品及其物理力学参数,以上资料的综合分析,是准确识别、研究和认识现代重力流沉积体系的重要方法。研究区内最近的2期重力流沉积分别发生于5.5 kaBP左右和45 kaBP前,重力流的发生一般都是由上陆坡区海底峡谷的活动引起的。最近的一期重力流事件中,先后发生了浊流沉积和块状搬运体(MTDs)沉积,MTDs沉积过程中会对下伏地层产生明显的冲蚀现象。在重力流沉积区进行水下结构物设计和施工时,应特别关注重力流沉积引起的地形坡度变化,以及地层中土质成分的差异,可能对水下结构物的安装和维护产生的影响。

  • 加载中
  • 图 1  研究区域及水深地形图

    Figure 1. 

    图 2  通过碳14C测年推算重力流发生年代(图1中的G-G’)

    Figure 2. 

    图 3  通过地形识别最近一期MTDs沉积(位于图1中的a区域)

    Figure 3. 

    图 4  坡度图/浅地层剖面图——浊流沉积与正常沉积之间形成的边缘

    Figure 4. 

    图 5  陆坡区后向散射强度平面图

    Figure 5. 

    图 6  后向散射图(左)与浅地层剖面(右)对比

    Figure 6. 

    图 7  浅地层剖面——近期浊流与MTDs沉积(图1中的E-E’)

    Figure 7. 

    图 8  JPC取样所获取的MTDs样品

    Figure 8. 

    图 9  浅地层剖面——浊流堆积在海底凹陷处(图1中的D-D’)

    Figure 9. 

    图 10  浊流与MTDs沉积模式

    Figure 10. 

    图 11  调查区域水深光照图及东-西向浅地层剖面(图1中的F-F’)

    Figure 11. 

    表 1  浊流沉积JPC取样土质参数

    Table 1.  Soil parameters for JPC Sampling in turbidity area

    样品深度/ m含水/ %容重/(kN/m3界限含水量/%200#/ %颗粒密度
    液限塑限塑性指数
    0.511313.889.239.449.8942.7
    1.38015.271.131.639.5962.71
    211713.78140.740.3932.69
    2.713013.4101.745.156.6952.7
    3.513313.1105.145.559.6932.7
    4.211213.610444.659.4962.7
    4.911913.594.340.453.9972.7
    下载: 导出CSV
  • [1]

    Heezen B C, Ewing W M. Turbidity currents and submarine slumps and the 1929 Grand Banks (Newfoundland) earthquake [J]. American Journal Science Series, 1952, 250: 849-873. doi: 10.2475/ajs.250.12.849

    [2]

    Parker G, Garcia M, Fukushima Y, et al. Experiments on turbidity currents over an erodible bed [J]. Journal of Hydraulic Research, 1987, 25: 123-147. doi: 10.1080/00221688709499292

    [3]

    Garcia M. Depositional turbidity currents laden with poorly sorted sediment [J]. Journal of Hydraulic Engineering, 1994, 120: 1 240-1 263. doi: 10.1061/(ASCE)0733-9429(1994)120:11(1240)

    [4]

    Huang H, Imran J, Pirmez C. Numerical modeling of poorly sorted depositional turbidity currents [J]. Journal of Geophysical Research, 2007, 112: 1-15.

    [5]

    Bouma A H, Normark W R, Barnes N E. Submarine Fans and Related Turbidite Systems [M]. New York: Springer Verlag, 1985: 351.

    [6]

    Talling P J, Masson D G, Sumner E J, et al. Subaqueous sediment density flows: Depositional processes and deposit types [J]. Sedimentology, 2012, 59(7): 1 937-2 003. doi: 10.1111/j.1365-3091.2012.01353.x

    [7]

    Bouma A H. Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation[M]. Amsterdam: Elsevier, 1962: 168.

    [8]

    秦志亮. 南海北部陆坡块体搬运沉积体系的沉积过程、分布及成因研究[D]. 中国科学院研究生院. 2012.

    QIN Zhiliang. Study on the sedimentary process, distribution and genesis of the transport sedimentary system on the northern continental slope of the South China Sea [D]. Graduate School of Chinese Academy of Sciences. 2012.

    [9]

    邵磊, 李学杰, 耿建华, 等. 南海北部深水底流沉积作用[J]. 中国科学: D辑: 地球科学, 2007(6):771-777

    SHAOLei, LI Xuejie, GENG Jianhua, et al. Deepwater undercurrent sedimentation in the northern South China Sea [J]. Chinese Science: part D: Geoscience, 2007(6): 771-777.

    [10]

    王大伟, 吴时国, 董冬冬, 等. 琼东南盆地第四纪块体搬运体系的地震特征[J]. 海洋地质与第四纪地质, 2009(3):69-74

    WANG Dawei, WU Shiguo, DONG Dongdong, et al. Seismic characteristics of Quaternary block transport system in Qiongdongnan Basin [J]. Marine Geology and Quaternary Geology, 2009(3): 69-74.

    [11]

    王俊勤, 张广旭, 陈端新, 等. 琼东南盆地陵水研究区海底地质灾害类型、分布和成因机制[J]. 海洋地质与第四纪地质, 2019(4):87-95

    WANG Junqin, Zhang GUANGXU, CHEN Duanxin, et al. Types, distribution and genetic mechanism of submarine geological disasters in Lingshui study area of Qiongdongnan Basin [J]. Marine Geology and Quaternary Geology, 2019(4): 87-95.

    [12]

    王大伟, 吴时国, 秦志亮, 等. 南海陆坡大型块体搬运体系的结构与识别特征[J]. 海洋地质与第四纪地质, 2009(5):65-72

    WANG Dawei, WU Shiguo, QIN Zhiliang, et al. Structure and identification characteristics of large block transport system on the continental slope of the South China Sea [J]. Marine Geology and Quaternary Geology, 2009(5): 65-72.

    [13]

    袁圣强, 吴时国, 赵宗举, 等. 南海北部陆坡深水区沉积物输送模式探讨[J]. 海洋地质与第四纪地质, 2010(4):39-48

    YUAN Shengqiang, WU Shiguo, ZHAO Zongju, et al. Discussion on sediment transport model in deep water area of northern continental slope of South China Sea [J]. Marine geology and Quaternary geology, 2010(4): 39-48.

    [14]

    张娜, 姜涛, 张道军. 琼东南盆地海底地形地貌特征及其对深水沉积的控制[J]. 海洋地质与第四纪地质, 2012(5):27-33

    ZHANG Na, JIANG Tao, ZHANG Daojun. Seafloor topography and geomorphology in Qiongdongnan Basin and its control on deep-water sedimentation [J]. Marine Geology and Quaternary Geology, 2012(5): 27-33.

    [15]

    庞雄, 陈长民, 朱明. 深水沉积研究前缘问题[J]. 地质论评, 2007(1):36-42 doi: 10.3321/j.issn:0371-5736.2007.01.006

    PANG Xiong, CHEN Changmin, ZHU Ming. Frontier problems in the study of deep-water sedimentation [J]. A review of geology, 2007(1): 36-42. doi: 10.3321/j.issn:0371-5736.2007.01.006

    [16]

    徐景平. 海底浊流研究百年回顾[J]. 中国海洋大学学报: 自然科学版, 2014(10):98-105

    XU Jingping. A hundred-year review of the study of submarine turbidity current [J]. Journal of Ocean University of China: natural Science Edition, 2014(10): 98-105.

    [17]

    姜辉. 浊流沉积的动力学机制与响应[J]. 石油与天然气地质, 2010, 8(8):428-435

    JIANG Hui. Dynamic mechanism and response of turbidity current deposition [J]. Petroleum and natural gas geology, 2010, 8(8): 428-435.

    [18]

    李利阳. 浊流沉积研究的新进展: 鲍马序列、海底扇的重新审视[J]. 沉积与特提斯地质, 2015(4):106-112 doi: 10.3969/j.issn.1009-3850.2015.04.015

    LI Liyang. New progress in the study of turbidite deposits: re-examination of Baoma sequence and subsea fan [J]. Sedimentation and Tethys geology, 2015(4): 106-112. doi: 10.3969/j.issn.1009-3850.2015.04.015

    [19]

    孙国桐. 深水重力流沉积研究进展[J]. 地质科技情报, 2015(3):30-36

    SUN Guotong. Research progress of gravity flow deposition in deep water [J]. Geological science and technology information, 2015(3): 30-36.

    [20]

    梁建设, 田兵, 王琪, 等. 深水沉积理论研究现状、存在问题及发展趋势[J]. 天然气地球科学, 2017(10):1488-1496

    LIANG Jian, TIAN Bing, WANG Qi, et al. Research status, existing problems and development trend of deepwater sedimentation theory [J]. Natural Gas Geoscience, 2017(10): 1488-1496.

    [21]

    Laval A, Cremer M, Beghin P, et al. Density surges: Two-dimensional experiments [J]. Sedimentology, 2010, 35(1): 73-84.

    [22]

    MarrJ G, Harff P A, Shanmugam G, et al. Experiments on subaqueous sandy gravity flows: The role of clay and water content in flow dynamics and depositional structures [J]. Geo-logical Society of America Bulletin, 2001, 113(11): 1377-1386. doi: 10.1130/0016-7606(2001)113<1377:EOSSGF>2.0.CO;2

    [23]

    Yin M, Rui Y. Laboratory study on submarine debris flow [J]. Marine Georesources & Geotechnology, 2018, 36(8): 950-958.

  • 加载中

(11)

(1)

计量
  • 文章访问数:  1005
  • PDF下载数:  29
  • 施引文献:  0
出版历程
收稿日期:  2019-12-30
修回日期:  2020-06-27
刊出日期:  2020-10-25

目录