杭州湾沉积物中硫酸盐—甲烷转换带内的碳循环

贺行良, 谭丽菊, 段晓勇, 印萍, 谢永清, 杨磊, 董超, 王江涛. 杭州湾沉积物中硫酸盐—甲烷转换带内的碳循环[J]. 海洋地质与第四纪地质, 2020, 40(3): 51-60. doi: 10.16562/j.cnki.0256-1492.2020021401
引用本文: 贺行良, 谭丽菊, 段晓勇, 印萍, 谢永清, 杨磊, 董超, 王江涛. 杭州湾沉积物中硫酸盐—甲烷转换带内的碳循环[J]. 海洋地质与第四纪地质, 2020, 40(3): 51-60. doi: 10.16562/j.cnki.0256-1492.2020021401
HE Xingliang, TAN Lijv, DUAN Xiaoyong, YIN Ping, XIE Yongqing, YANG Lei, DONG Chao, WANG Jiangtao. Carbon cycle within the sulfate-methane transition zone in the marine sediments of Hangzhou Bay[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 51-60. doi: 10.16562/j.cnki.0256-1492.2020021401
Citation: HE Xingliang, TAN Lijv, DUAN Xiaoyong, YIN Ping, XIE Yongqing, YANG Lei, DONG Chao, WANG Jiangtao. Carbon cycle within the sulfate-methane transition zone in the marine sediments of Hangzhou Bay[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 51-60. doi: 10.16562/j.cnki.0256-1492.2020021401

杭州湾沉积物中硫酸盐—甲烷转换带内的碳循环

  • 基金项目: 国家地质调查项目“浙江中部海岸带综合地质调查”(DD20190276),“长江口等重点海岸带综合地质调查”(DD20160145);国家自然科学基金“海洋沉积物中天然气水合物分解释放气体的氧化特性研究”(41406076);浙江省地质矿产专项资金“浙江省海岸带重点区综合地质调查(嘉兴重点区)”(【省资】2017005)
详细信息
    作者简介: 贺行良(1982—),男,高级工程师,主要研究方向为海洋生物地球化学,E-mail:76791772@qq.com
    通讯作者: 段晓勇(1987—),男,副研究员,主要研究方向为环境地球化学,E-mail:duan-xy@qq.com
  • 中图分类号: P76

Carbon cycle within the sulfate-methane transition zone in the marine sediments of Hangzhou Bay

More Information
  • 杭州湾海底沉积物中蕴藏着大量的浅层生物气,作为温室气体CH4的重要载体,研究其甲烷厌氧氧化(AOM)及相关碳循环过程,对正确评估浅层生物气的生态环境效应具有重要的科学意义。通过对YS6孔柱状沉积物孔隙水、顶空气等地球化学参数的测试分析,基于质量平衡和碳同位素质量平衡原理,利用“箱式模型”定量研究了硫酸盐—甲烷转换带(SMTZ)内的碳循环过程。结果表明:SMTZ位于海底约6~8 mbsf沉积层,其内部碳循环过程除了包含有机质的硫酸盐还原(OSR)、AOM和碳酸盐沉淀(CP)反应外,还隐藏存在“AOM生成的溶解无机碳(DIC)”产甲烷反应(CR),反应速率分别为9.14、7.42、4.36、2.72 mmol·m−2·a−1,而有机质降解产甲烷反应(ME)未发生。各反应对SMTZ内孔隙水DIC的补充贡献率为OSR>AOM>ME,而对DIC的消耗贡献率CP>CR。深部含甲烷沉积层向上扩散而来的CH4并不是驱动SMTZ内部SO42−还原的唯一电子供体,CR和OSR反应亦是导致进入SMTZ内硫酸盐扩散通量大于甲烷的重要因素,且SMTZ下边缘沉积层出现明显的13CH4亏损亦与CR反应有关。本研究认为,定量评估海底沉积物中AOM作用的相对强弱时,SMTZ内可能存在的“隐藏的”产甲烷作用(如CR、ME等)不能忽视。

  • 加载中
  • 图 1  YS 6站位位置

    Figure 1. 

    图 2  SMTZ内碳循环“箱式模型”图[14]

    Figure 2. 

    图 3  YS6孔孔隙水部分溶解组分的垂直分布剖面

    Figure 3. 

    图 4  5种反应对SMTZ内DIC碳库的相对贡献率

    Figure 4. 

    表 1  孔隙水部分溶解组分的扩散通量

    Table 1.  Diffusion fluxes of dissolved components in pore water

    组分扩散系数D0/(m2·s−1扩散通量F/(mmol·m−2·a−1符号
    SO42−8.91E-1011.87FSO4.in
    CH41.39E-094.65FCH4.in
    Ca2+6.72E-102.29FCa.in
    0.76FCa.out
    Mg2+5.91E-104.15FMg.in
    1.33FMg.out
    DIC9.89E-1016.72FDIC.out
    7.23FDIC.in
    下载: 导出CSV

    表 2  SMTZ内轻、重碳同位素反应速率和总反应速率

    Table 2.  The reaction rates of light and heavy carbon isotopes in SMTZ and the total reaction rates

    项目参数计算结果
    轻、重DIC通量(mmol·m−2·a−112FDIC.out−16.53
    12FDIC.in−7.15
    13FDIC.out−0.18
    13FDIC.in−0.08
    碳同位素值(‰)δ13COM−23.32
    δ13CCH4-SMTZ−90.34
    δ13CDIC-SMTZ−17.04
    δ13CCH4-bottom−71.31
    δ13CDIC-bottom−0.42
    13C/12C比值rstd0.011 237
    rOM0.010 975
    rCH4-SMTZ0.010 222
    rDIC-SMTZ0.011 046
    rCH4-bottom0.010 436
    rDIC-bottom0.011 232
    分馏系数αCR1.070 9
    αAOM1.017 0
    反应分数f0.000.501.00
    b0.370.370.37
    轻同位素反应速率
    (mmol·m−2·a−1
    12RAOM11.879.267.35
    12RCR4.353.392.69
    12RCP4.314.314.31
    12ROM12.3410.449.04
    12RME12.345.220.00
    12RME-CH46.172.610.00
    12RME-DIC6.172.610.00
    12ROSR-C0.005.229.04
    重同位素反应速率
    (mmol·m−2·a−1
    13RAOM0.120.090.07
    13RCR0.040.030.03
    13RCP0.050.050.05
    13ROM0.140.110.10
    13RME0.140.060.00
    13RME-CH40.060.030.00
    13RME-DIC0.070.030.00
    13ROSR-C0.000.060.10
    总反应速率
    (mmol·m−2·a−1
    RAOM11.999.357.42
    RCR4.393.422.72
    RCP4.364.364.36
    ROM12.4810.559.14
    RME12.485.280.00
    RME-CH46.242.640.00
    RME-DIC6.242.640.00
    ROSR-C0.005.289.14
    甲烷通量绝对差值(mmol·m−2·a−1)△FCH43.291.360.06
      注:△FCH4= FCH4.in−(RAOM−RCR−RME-CH4)。
    下载: 导出CSV
  • [1]

    Milkov A V. Global estimates of hydrate-bound gas in marine sediments: how much is really out there? [J]. Earth-Science Reviews, 2004, 66(3-4): 183-197. doi: 10.1016/j.earscirev.2003.11.002

    [2]

    Reeburgh W S. Oceanic methane biogeochemistry [J]. Chemical Reviews, 2007, 107(2): 486-513. doi: 10.1021/cr050362v

    [3]

    Regnier P, Dale A W, Arndt S, et al. Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: a modeling perspective [J]. Earth-Science Reviews, 2011, 106(1-2): 105-130. doi: 10.1016/j.earscirev.2011.01.002

    [4]

    Blair N E, Aller R C. Anaerobic methane oxidation on the Amazon shelf [J]. Geochimica et Cosmochimica Acta, 1995, 59(18): 3707-3715. doi: 10.1016/0016-7037(95)00277-7

    [5]

    Borowski W S, Paull C K, Ussler III W. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate [J]. Geology, 1996, 24(7): 655-658. doi: 10.1130/0091-7613(1996)024<0655:MPWSPI>2.3.CO;2

    [6]

    Egger M, Riedinger N, Mogollón J M, et al. Global diffusive fluxes of methane in marine sediments [J]. Nature Geoscience, 2018, 11(6): 421-245. doi: 10.1038/s41561-018-0122-8

    [7]

    Beulig F, Røy H, McGlynn S E, et al. Cryptic CH4 cycling in the sulfate–methane transition of marine sediments apparently mediated by ANME-1 archaea [J]. ISME J, 2018, 13(2): 250-262.

    [8]

    Flury S, Røy H, Dale A W, et al. Controls on subsurface methane fluxes and shallow gas formation in Baltic Sea sediment (Aarhus Bay, Denmark) [J]. Geochimica et Cosmochimica Acta, 2016, 188: 297-309. doi: 10.1016/j.gca.2016.05.037

    [9]

    Komada T, Burdige D J, Li H L, et al. Organic matter cycling across the sulfate-methane transition zone of the Santa Barbara Basin, California Borderland [J]. Geochimica et Cosmochimica Acta, 2016, 176: 259-278. doi: 10.1016/j.gca.2015.12.022

    [10]

    Yoshinaga M Y, Holler T, Goldhammer T, et al. Carbon isotope equilibration during sulphate-limited anaerobic oxidation of methane [J]. Nature Geoscience, 2014, 7(3): 190-194. doi: 10.1038/ngeo2069

    [11]

    Kim S, Choi K, Chung J. Reduction in carbon dioxide and production of methane by biological reaction in the electronics industry [J]. International Journal of Hydrogen Energy, 2013, 38(8): 3488-3496. doi: 10.1016/j.ijhydene.2012.12.007

    [12]

    Lash G G. Significance of stable carbon isotope trends in carbonate concretions formed in association with anaerobic oxidation of methane (AOM), Middle and Upper Devonian shale succession, western New York State, USA [J]. Marine and Petroleum Geology, 2018, 91: 470-479. doi: 10.1016/j.marpetgeo.2018.01.032

    [13]

    Chuang P C, Frank Y T, Wallmann K, et al. Carbon isotope exchange during Anaerobic Oxidation of Methane (AOM) in sediments of the northeastern South China Sea [J]. Geochimica et Cosmochimica Acta, 2019, 246: 138-155. doi: 10.1016/j.gca.2018.11.003

    [14]

    Hong W L, Torres M E, Kim J H, et al. Carbon cycling within the sulfate-methane-transition-zone in marine sediments from the Ulleung Basin [J]. Biogeochemistry, 2013, 115(1-3): 129-148. doi: 10.1007/s10533-012-9824-y

    [15]

    Ni Y Y, Dai J X, Zou C N, et al. Geochemical characteristics of biogenic gases in China [J]. International Journal of Coal Geology, 2013, 113: 76-87. doi: 10.1016/j.coal.2012.07.003

    [16]

    柴小平, 胡宝兰, 魏娜, 等. 杭州湾及邻近海域表层沉积物重金属的分布、来源及评价[J]. 环境科学学报, 2015, 35(12):3906-3916

    CHAI Xiaoping, HU Baolan, WEI Na, et al. Distribution, sources and assessment of heavy metals in surface sediments of the Hangzhou Bay and its adjacent areas [J]. Acta Scientiae Circumstantiae, 2015, 35(12): 3906-3916.

    [17]

    夏小明, 杨辉, 李炎, 等. 长江口-杭州湾毗连海区的现代沉积速率[J]. 沉积学报, 2004, 22(1):130-135 doi: 10.3969/j.issn.1000-0550.2004.01.020

    XIA Xiaming, YANG Hui, LI Yan, et al. Modern sedimentation rates in the contiguous sea area of Changjiang Estuary and Hangzhou Bay [J]. Acta Sedimentologica Sinica, 2004, 22(1): 130-135. doi: 10.3969/j.issn.1000-0550.2004.01.020

    [18]

    Xu F L, Ji Z Q, Wang K, et al. The distribution of sedimentary organic matter and implication of its transfer from Changjiang Estuary to Hangzhou Bay, China [J]. Open Journal of Marine Science, 2016, 6(1): 103-114. doi: 10.4236/ojms.2016.61010

    [19]

    陈少平, 孙家振, 沈传波, 等. 杭州湾地区浅层气成藏条件分析[J]. 华东地质学院学报, 2003, 26(4):352-356

    CHEN Shaoping, SUN Jiazhen, SHEN Chuanbo, et al. Reservoir formation condition of shallow gas in the area of Hangzhou Bay [J]. Journal of East China Geological Institute, 2003, 26(4): 352-356.

    [20]

    胡新强, 顾兆峰, 张训华, 等. 长江口外海域浅层气地震反射形态特征及分布[J]. 海洋地质与第四纪地质, 2016, 36(1):151-157

    HU Xinqiang, GU Zhaofeng, ZHANG Xunhua, et al. Seismic shape features and distribution of shallow gas in the sea area off the Yangtze River Estuary [J]. Marine Geology & Quaternary Geology, 2016, 36(1): 151-157.

    [21]

    杨涛, 蒋少涌, 赖鸣远, 等. 海洋沉积物孔隙水中溶解无机碳(DIC)的碳同位素分析方法[J]. 地球学报, 2005, 26(S1):51-52

    YANG Tao, JIANG Shaoyong, LAI Mingyuan, et al. An analytical method for carbon isotopic composition of dissolved inorganic carbon (DIC) in pore waters from marine sediments [J]. Acta Geoscientica Sinica, 2005, 26(S1): 51-52.

    [22]

    杨涛, 蒋少涌, 赖鸣远, 等. 连续流同位素质谱测定水中溶解无机碳含量和碳同位素组成的方法研究[J]. 地球化学, 2006, 35(6):675-680 doi: 10.3321/j.issn:0379-1726.2006.06.014

    YANG Tao, JIANG Shaoyong, LAI Mingyuan, et al. Analytical method for concentration and carbon isotopic composition of dissolved inorganic carbon (DIC) by continuous flow-isotope ratio mass spectrometer [J]. Geochimica, 2006, 35(6): 675-680. doi: 10.3321/j.issn:0379-1726.2006.06.014

    [23]

    张媛媛, 林学辉, 贺行良, 等. 离子色谱法同时测定海洋沉积物中氯和硫[J]. 分析科学学报, 2015, 31(2):249-252

    ZHANG Yuanyuan, LIN Xuehui, HE Xingliang, et al. Determination of chlorine and sulfur in marine sediment by ion chromatography [J]. Journal of Analytical Science, 2015, 31(2): 249-252.

    [24]

    Snyder G T, Hiruta A, Matsumoto R, et al. Pore water profiles and authigenic mineralization in shallow marine sediments above the methane-charged system on Umitaka Spur, Japan Sea [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(11-13): 1216-1239. doi: 10.1016/j.dsr2.2007.04.001

    [25]

    贺行良, 夏宁, 刘昌岭, 等. FID/TCD并联气相色谱法测定天然气水合物的气体组成[J]. 分析测试学报, 2012, 31(2):206-210 doi: 10.3969/j.issn.1004-4957.2012.02.017

    HE Xingliang, XIA Ning, LIU Changling, et al. Compositional analysis of gases in natural gas hydrates by GC-FID/TCD [J]. Journal of Instrumental Analysis, 2012, 31(2): 206-210. doi: 10.3969/j.issn.1004-4957.2012.02.017

    [26]

    贺行良, 刘昌岭, 王江涛, 等. 气相色谱-同位素比值质谱法测定天然气水合物气体单体碳氢同位素[J]. 岩矿测试, 2012, 31(1):154-158 doi: 10.3969/j.issn.0254-5357.2012.01.021

    HE Xingliang, LIU Changling, WANG Jiangtao, et al. Measurement of carbon and hydrogen isotopes of natural gas hydrate-bound gases by gas chromatography-isotope ratio mass spectrometry [J]. Rock and Mineral Analysis, 2012, 31(1): 154-158. doi: 10.3969/j.issn.0254-5357.2012.01.021

    [27]

    Iversen N, Jørgensen B B. Diffusion coefficients of sulfate and methane in marine sediments: Influence of porosity [J]. Geochimica et Cosmochimica Acta, 1993, 57(3): 571-578. doi: 10.1016/0016-7037(93)90368-7

    [28]

    Boudreau B P. Diagenetic Models and Their Implementation: Modelling Transport and Reactions in Aquatic Sediments[M]. Berlin: Springer, 1997.

    [29]

    Schulz H D. Quantification of early diagenesis: dissolved constituents in pore water and signals in the solid phase[M]//Schulz H D, Zabel M. Marine Geochemistry. Berlin, Heidelberg: Springer, 2006: 73-124.

    [30]

    Wehrmann L M, Risgaard-Petersen N, Schrum H N, et al. Coupled organic and inorganic carbon cycling in the deep subseafloor sediment of the northeastern Bering Sea Slope (IODP Exp. 323) [J]. Chemical Geology, 2011, 284(3-4): 251-261. doi: 10.1016/j.chemgeo.2011.03.002

    [31]

    Hu C Y, Yang T F, Burr G S, et al. Biogeochemical cycles at the sulfate-methane transition zone (SMTZ) and geochemical characteristics of the pore fluids offshore southwestern Taiwan [J]. Journal of Asian Earth Sciences, 2017, 149: 172-183. doi: 10.1016/j.jseaes.2017.07.002

    [32]

    Rees C E. A steady-state model for sulphur isotope fractionation in bacterial reduction processes [J]. Geochimica et Cosmochimica Acta, 1973, 37(5): 1141-1162. doi: 10.1016/0016-7037(73)90052-5

    [33]

    Bayon G, Pierre C, Etoubleau J, et al. Sr/Ca and Mg/Ca ratios in Niger Delta sediments: Implications for authigenic carbonate genesis in cold seep environments [J]. Marine Geology, 2007, 241(1-4): 93-109. doi: 10.1016/j.margeo.2007.03.007

    [34]

    Nöthen K, Kasten S. Reconstructing changes in seep activity by means of pore water and solid phase Sr/Ca and Mg/Ca ratios in pockmark sediments of the Northern Congo Fan [J]. Marine Geology, 2011, 287(1-4): 1-13. doi: 10.1016/j.margeo.2011.06.008

    [35]

    Whiticar M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane [J]. Chemical Geology, 1999, 161(1-3): 291-314. doi: 10.1016/S0009-2541(99)00092-3

    [36]

    Treude T, Krause S, Maltby J, et al. Sulfate reduction and methane oxidation activity below the sulfate-methane transition zone in Alaskan Beaufort Sea continental margin sediments: Implications for deep sulfur cycling [J]. Geochimica et Cosmochimica Acta, 2014, 144: 217-237. doi: 10.1016/j.gca.2014.08.018

    [37]

    Borowski W S, Paull C K, Ussler III W. Carbon cycling within the upper methanogenic zone of continental rise sediments; an example from the methane-rich sediments overlying the Blake Ridge gas hydrate deposits [J]. Marine Chemistry, 1997, 57(3-4): 299-311. doi: 10.1016/S0304-4203(97)00019-4

    [38]

    Mazumdar A, Peketi A, Joao H M, et al. Pore-water chemistry of sediment cores off Mahanadi Basin, Bay of Bengal: Possible link to deep seated methane hydrate deposit [J]. Marine and Petroleum Geology, 2014, 49: 162-175. doi: 10.1016/j.marpetgeo.2013.10.011

    [39]

    Wallace P J, Dickens G R, Paull C K, et al. Effects of core retrieval and degassing on the carbon isotope composition of methane in gas hydrate-and free gas-bearing sediments from the Blake Ridge[C]//Proceedings of the Ocean Drilling Program. Scientific Results. College Station, TX: Texas A&M University, 2000, 164: 101-112.

  • 加载中

(4)

(2)

计量
  • 文章访问数:  2753
  • PDF下载数:  96
  • 施引文献:  0
出版历程
收稿日期:  2020-02-14
修回日期:  2020-03-17
刊出日期:  2020-06-25

目录