赣东–浙西下寒武统荷塘组稀土元素特征及其地质意义

朱文博, 张训华, 曲中党, 黄正清, 王修齐, 丁大林. 赣东–浙西下寒武统荷塘组稀土元素特征及其地质意义[J]. 海洋地质与第四纪地质, 2021, 41(2): 88-99. doi: 10.16562/j.cnki.0256-1492.2020031201
引用本文: 朱文博, 张训华, 曲中党, 黄正清, 王修齐, 丁大林. 赣东–浙西下寒武统荷塘组稀土元素特征及其地质意义[J]. 海洋地质与第四纪地质, 2021, 41(2): 88-99. doi: 10.16562/j.cnki.0256-1492.2020031201
ZHU Wenbo, ZHANG Xunhua, QU Zhongdang, HUANG Zhengqing, WANG Xiuqi, DING Dalin. REE composition and its geological implications of the Hetang Formation mudstones in the East Jiangxi and west Zhejiang, China[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 88-99. doi: 10.16562/j.cnki.0256-1492.2020031201
Citation: ZHU Wenbo, ZHANG Xunhua, QU Zhongdang, HUANG Zhengqing, WANG Xiuqi, DING Dalin. REE composition and its geological implications of the Hetang Formation mudstones in the East Jiangxi and west Zhejiang, China[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 88-99. doi: 10.16562/j.cnki.0256-1492.2020031201

赣东–浙西下寒武统荷塘组稀土元素特征及其地质意义

  • 基金项目: “十三五”国家科技重大专项任务“下扬子地区寒武系页岩地球化学特征与含气性研究”(2016ZX05034-001-003);中央财政二级项目“苏皖地区页岩气地质调查”(DD20190083)
详细信息
    作者简介: 朱文博(1990—),男,在读博士生,从事地球物理及页岩气成藏研究,E-mail:zhuwenbo_2012@163.com
    通讯作者: 张训华(1961—),男,研究员,博导,从事构造地质、综合地球物理研究,E-mail:xunhuazh611102@sina.com
  • 中图分类号: P595

REE composition and its geological implications of the Hetang Formation mudstones in the East Jiangxi and west Zhejiang, China

More Information
  • 为揭示下扬子下寒武统黑色岩系的物源属性、构造背景及其沉积环境等特征,对赣东-浙西地区下寒武统荷塘组野外露头及钻井岩心进行了系统采样与稀土元素分析测试。结果显示,荷塘组样品稀土元素总量变化波动大(16.83×10−6 ~ 321.22×10−6),均值低(103.11×10−6),轻稀土元素富集且分异明显,重稀土元素亏损但分异小,普遍存在Ce负异常和明显Eu正异常。研究表明:①荷塘组硅质泥页岩形成于缺氧还原的裂陷海盆环境,构造背景为被动大陆边缘,物源受陆源、海水和热液共同影响,横峰、上饶受热液和海水影响最大,受陆源碎屑影响最小,常山、江山与之相反;②沉积过程普遍有热液活动参与,在上饶存在热液活动中心,活动强度呈西强东弱特点,并发现低温热液活动有利于有机质的富集。

  • 加载中
  • 图 1  研究区早寒武世沉积相及岩性柱状图[14]

    Figure 1. 

    图 2  赣东-浙西地区荷塘组球粒陨石标准化模式图

    Figure 2. 

    图 3  赣东-浙西地区荷塘组PAAS标准化模式图

    Figure 3. 

    图 4  常见水体和沉积物PAAS标准化后REE+Y模式图解[6, 26]

    Figure 4. 

    图 5  物源输入类型判别图

    Figure 5. 

    图 6  赣东-浙西荷塘组TOC与Eu异常值统计图

    Figure 6. 

    表 1  赣东-浙西下寒武统荷塘组稀土元素含量

    Table 1.  REE contents of Lower Cambrian Hetang Formation in east Jiangxi and west Zhejiang

    10−6
    采样地区样品ScYLaCePrNdSmEuGdTbDyHoErTmYbLuTOC/%
    开化KH-19.825.5125.3645.335.2918.792.922.042.200.261.240.240.720.120.870.132.99
    KH-211.137.8227.3340.086.5321.933.240.722.070.261.270.290.980.181.430.231.43
    KH-36.989.1926.1241.835.1617.853.031.302.080.291.550.330.960.171.220.193.43
    常山CS-19.6415.5925.8550.276.4523.094.430.953.550.573.000.611.620.291.930.291.48
    CS-21.9716.559.9414.661.666.471.200.341.280.221.330.351.010.150.910.133.76
    CS-33.535.897.5113.931.816.871.380.301.120.181.030.210.580.090.630.092.9
    玉山YS-16.3822.5136.4970.429.5234.606.531.175.470.854.370.852.200.322.100.303.1
    YS-24.0012.8614.1326.253.6413.762.750.522.370.402.250.471.260.191.310.192.18
    YS-312.6241.9053.9862.3811.8041.036.762.176.081.107.001.624.830.795.330.8010.73
    YS-44.1011.5913.4123.102.829.911.942.281.760.291.710.381.070.181.230.185.8
    横峰HF-11.7214.2124.9130.864.8921.884.481.163.930.532.390.420.930.110.620.096.03
    HF-21.146.824.145.540.702.870.730.300.940.160.870.180.440.060.350.044.08
    HF-31.369.946.057.471.064.110.760.820.840.140.890.220.610.090.590.0812.08
    HF-47.099.6331.3958.838.3131.076.353.284.100.522.110.421.200.201.440.222.39
    上饶SR-17.069.4239.8140.728.9430.445.640.954.080.582.510.400.960.130.850.124.27
    SR-29.364.3117.7072.953.259.971.662.601.620.191.040.210.640.120.910.133.05
    SR-315.0139.7737.5553.919.2234.706.961.776.211.116.681.393.790.593.720.533.06
    SR-48.2812.5649.5081.2811.5250.6310.141.926.910.893.670.591.490.211.400.193.59
    SR-54.7719.6626.4634.324.7716.612.711.692.420.352.020.501.430.201.390.2115.79
    SR-61.6126.177.039.762.157.611.890.582.280.463.380.772.460.412.760.381.97
    SR-73.9435.1322.0923.283.3712.782.260.562.520.442.910.732.100.301.760.2410.43
    SR-81.546.982.303.630.964.421.120.320.980.181.140.250.680.110.660.095.0
    ZJD-1井ZJD-111.915.622.641.95.2720.43.960.753.430.553.20.631.90.312.010.313.13
    ZJD-24.7510.71223.83.0812.42.420.512.110.31.930.371.090.171.060.153.52
    ZJD-35.1510.713.226.43.4313.92.760.562.270.362.020.381.110.171.10.153.51
    ZJD-46.112.615.328.93.6614.52.90.592.480.42.310.441.330.211.320.23.57
    ZJD-57.341621.540.45.0420.43.870.83.350.533.010.61.70.271.730.261.93
    ZJD-68.0221.128.549.86.2724.54.520.953.90.653.770.752.250.362.190.33
    ZJD-78.9522.428.6556.9728.25.381.084.560.724.030.782.250.342.080.312.76
    ZJD-86.4314.319.3364.3917.13.380.72.890.462.690.531.570.261.540.23
    ZJD-97.3112.51730.23.6114.12.740.572.30.382.250.471.40.241.490.222.97
    ZJD-105.5510.813.525.63.1712.72.50.552.10.352.080.411.190.191.240.183.33
    ZJD-115.169.612.323.73.0412.12.30.491.990.321.780.351.060.171.070.163.57
    ZJD-122.3512.610.120.12.219.011.790.41.710.291.720.361.070.160.930.145.22
    ZJD-137.455642.5667.7732.75.991.46.080.996.251.323.890.583.290.4816.93
    ZJD-148.5515075.974.316.973.414.73.3815.52.7517.43.8211.21.649.061.279.56
    ZJD-158.7334.122.833.85.4822.74.681.064.260.764.881.073.350.573.460.5413.67
    平均值6.9227.2723.6738.395.3521.874.260.923.930.653.950.822.420.382.240.335.67
    淳安CA9.9318.9233.924.0413.793.230.381.660.281.680.381.090.181.130.17
    安吉AJ60.3429.9734.796.0624.334.851.236.170.976.311.454.160.623.530.52
    PAAS a38.2079.608.8333.905.551.084.660.774.680.992.850.412.820.43
    球粒陨石b0.230.600.090.450.150.060.200.040.240.060.160.020.160.02
      注:a(PAAS:后太古代澳大利亚页岩)数据引自Meclennan(2001)[19];b数据引自Sun(1989)[20]
    下载: 导出CSV

    表 2  赣东-浙西下寒武统荷塘组稀土元素分析结果

    Table 2.  REE analyses of Lower Cambrian Hetang Formation in east Jiangxi and west Zhejiang

    样品ΣREE/10−6ΣLREE/10−6ΣHREE/10−6ΣLREE/ΣHREEY/HoLa/Yb(La/Ce)N(La/Sm)S(La/Yb)S(La/Sm)N(La/Yb)NδCeδEu
    KH-1105.5299.725.7917.2122.7529.101.175.4320.151.262.150.903.79
    KH-2106.5599.846.7214.8726.5419.101.425.2813.231.221.410.691.30
    KH-3102.0795.286.7914.0327.6721.451.305.4114.851.251.580.832.44
    CS-1122.89111.0411.859.3725.3913.431.073.669.300.850.990.901.13
    CS-239.6434.265.386.3747.6110.891.415.207.541.210.800.821.28
    CS-335.7431.803.948.0728.1011.921.123.428.250.790.880.871.14
    YS-1175.19158.7316.469.6426.6017.371.083.5012.030.811.280.870.92
    YS-269.4761.038.447.2327.3410.811.123.237.480.750.800.840.95
    YS-3205.66178.1127.546.4725.9410.121.805.007.011.160.750.571.60
    YS-460.2553.466.797.8730.4710.891.214.347.541.010.800.875.83
    HF-197.1888.179.019.7934.0040.241.683.4927.860.812.970.641.30
    HF-217.3314.283.054.6838.9311.681.563.548.090.820.860.741.69
    HF-323.7120.263.455.8646.1910.331.694.997.151.160.760.684.80
    HF-4149.43139.2210.2113.6423.1021.831.113.1015.110.721.610.843.02
    SR-1136.13126.519.6313.1423.6046.822.044.4232.421.033.460.500.93
    SR-2112.98108.114.8622.2320.5219.390.516.6913.431.551.432.217.47
    SR-3168.14144.1024.045.9928.5510.081.453.386.980.780.740.671.27
    SR-4220.34205.0015.3513.3621.1935.321.273.0624.450.712.610.791.08
    SR-595.0786.568.5110.1739.5119.071.616.1313.201.421.410.703.10
    SR-641.9229.0112.912.2533.852.551.502.341.770.540.190.571.32
    SR-775.3364.3311.005.8547.9212.581.986.138.711.420.930.611.10
    SR-816.8312.754.093.1227.873.511.321.292.430.300.260.541.43
    ZJD-1107.2294.8812.347.6924.7611.241.123.587.780.830.830.890.96
    ZJD-261.3954.217.187.5528.9211.321.053.117.840.720.840.901.06
    ZJD-367.8160.257.567.9728.1612.001.043.008.310.690.890.901.05
    ZJD-474.5465.858.697.5828.6411.591.103.318.030.770.860.891.04
    ZJD-5103.4692.0111.458.0426.6712.431.113.488.600.810.920.901.05
    ZJD-6128.74114.5414.208.0728.1313.011.193.959.010.920.960.861.07
    ZJD-7140.30125.2315.078.3128.7213.751.083.339.520.771.020.901.03
    ZJD-891.0480.8710.177.9526.9812.531.123.588.680.830.930.901.05
    ZJD-976.9768.228.757.8026.6011.411.173.897.900.900.840.891.07
    ZJD-1065.7658.027.747.5026.3410.891.103.387.540.780.800.901.13
    ZJD-1160.8353.936.907.8227.4311.501.083.357.960.780.850.891.08
    ZJD-1249.9943.616.386.8435.0010.861.053.547.520.820.800.981.08
    ZJD-13179.24156.3622.886.8342.4212.921.344.458.941.030.950.831.09
    ZJD-14321.22258.5862.644.1339.278.382.133.245.800.750.620.481.05
    ZJD-15109.4190.5218.894.7931.876.591.413.054.560.710.490.701.12
    CA80.8574.286.5711.3126.1316.741.163.6711.590.851.240.890.77
    AJ124.96101.2323.734.2741.618.491.803.875.880.900.630.591.06
      注:下标S表示球粒陨石标准化[20],下标N表示经过后太古代澳大利亚页岩值(PAAS)标准化[19];∑REE=La+Ce+Pr+Nd+Sm+ Eu+Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu, ∑LREE=La+Ce+Pr+Nd+Sm+Eu,∑HREE=Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu, δCe=2*CeS/(LaS+PrS), δEu=EuS/(SmS+GdS0.5
    下载: 导出CSV

    表 3  赣东-浙西荷塘组与不同沉积环境硅质岩对比[4, 21, 25, 34]

    Table 3.  Comparison between Hetang Formation and the cherts of different sedimentary environments

    Y/Ho(La/Yb)S(La/Yb)N(La/Ce)NδCeδEu
    横峰地区23.10~46.19(35.55)7.15~27.86(14.56)0.76~2.97(1.55)1.11~1.69(1.51)0.64~0.84(0.72)1.30~4.80(2.70)
    上饶地区20.52~47.92(30.38)1.77~32.42(12.92)0.19~3.46(1.38)0.51~2.04(1.46)0.50~2.21(0.82)0.93~7.47(2.21)
    玉山地区25.94~30.47(27.59)7.01~12.03(8.51)0.75~1.28(0.91)1.08~1.80(1.30)0.57~0.87(0.79)0.92~5.83(2.32)
    开化地区22.75~27.67(25.65)13.23~20.15(16.08)1.41~2.15(1.71)1.17~1.42(1.30)0.69~0.90(0.81)1.30~3.79(2.51)
    常山地区25.39~47.61(33.70)7.54~9.30(8.36)0.80~0.99(0.89)1.07~1.41(1.20)0.82~0.90(0.86)1.13~1.28(1.18)
    江山地区24.76~42.42(29.99)4.56~9.52(7.87)0.49~1.02(0.84)1.04~2.13(1.21)0.48~0.98(0.85)0.96~1.13(1.06)
    弗朗西斯科陆缘0.43~1.22(0.75)≈10.67~1.52(1.11)0.64~1.72(1.21)
    弗朗西斯科远洋0.48~2.26(1.30)2.0~3.00.50~0.76(0.60)1.06~1.33(1.15)
    弗朗西斯科洋脊0.57~0.96(0.74)≥3.50.18~0.60(0.29)0.97~1.35(1.08)
    Sasayama远洋29.70~44.33(36.80)0.47~1.51(0.87)0.36~1.22(0.72)1.00~1.23(1.11)
    澳大利亚裂谷0.46±0.401.16±0.360.91±0.280.87~20.65(6.59)
    下载: 导出CSV
  • [1]

    Henderson P. Rare Earth Element Geochemistry[M]. Amsterdam: Elsevier, 2013.

    [2]

    Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell, 1985.

    [3]

    Murray R W, Brink M R B T, Jones D L, et al. Rare earth elements as indicators of different marine depositional environments in chert and shale [J]. Geology, 1990, 18(3): 268-271. doi: 10.1130/0091-7613(1990)018<0268:REEAIO>2.3.CO;2

    [4]

    Murray R W, Brink M R B T, Gerlach D C, et al. Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California: assessing REE sources to fine-grained marine sediments [J]. Geochimica et Cosmochimica Acta, 1991, 55(7): 1875-1895. doi: 10.1016/0016-7037(91)90030-9

    [5]

    陈德潜, 陈刚. 实用稀土元素地球化学[M]. 北京: 冶金工业出版社, 1990: 135-206.

    CHEN Deqian, CHEN Gang. Practical REE Geochemistry[M]. Beijing: Metallurgical Industry Press, 1990: 135-206.

    [6]

    Sylvestre G, Laure N T E, Djibril K N G, et al. A mixed seawater and hydrothermal origin of superior-type banded iron formation (BIF)-hosted Kouambo iron deposit, Palaeoproterozoic Nyong series, Southwestern Cameroon: constraints from petrography and geochemistry [J]. Ore Geology Reviews, 2017, 80: 860-875. doi: 10.1016/j.oregeorev.2016.08.021

    [7]

    魏国齐, 杜金虎, 徐春春, 等. 四川盆地高石梯—磨溪地区震旦系—寒武系大型气藏特征与聚集模式[J]. 石油学报, 2015, 36(1):1-12 doi: 10.7623/syxb201501001

    WEI Guoqi, DU Jinhu, XU Chunchun, et al. Characteristics and accumulation modes of large gas reservoirs in Sinian-Cambrian of Gaoshiti-Moxi region, Sichuan Basin [J]. Acta Petrolei Sinica, 2015, 36(1): 1-12. doi: 10.7623/syxb201501001

    [8]

    Zou C N, Dong D Z, Wang Y M, et al. Shale gas in China: characteristics, challenges and prospects (Ⅱ) [J]. Petroleum Exploration and Development, 2016, 43(2): 182-196. doi: 10.1016/S1876-3804(16)30022-2

    [9]

    李娟, 于炳松, 郭峰. 黔北地区下寒武统底部黑色页岩沉积环境条件与源区构造背景分析[J]. 沉积学报, 2013, 31(1):20-31

    LI Juan, YU Bingsong, GUO Feng. Depositional setting and tectonic background analysis on Lower Cambrian Black Shales in the North of Guizhou Province [J]. Acta Sedimentologica Sinica, 2013, 31(1): 20-31.

    [10]

    曹婷婷, 徐思煌, 王约. 川东北下寒武统筇竹寺组稀土元素特征及其地质意义——以南江杨坝剖面为例[J]. 石油实验地质, 2018, 40(5):716-723 doi: 10.11781/sysydz201805716

    CAO Tingting, XU Sihuang, WANG Yue. Characteristics of rare earth elements in Lower Cambrian Qiongzhusi Formation in northeastern Sichuan Basin and its geological implications: a case study of Yangba section, Nanjiang [J]. Petroleum Geology and Experiment, 2018, 40(5): 716-723. doi: 10.11781/sysydz201805716

    [11]

    贾智彬, 侯读杰, 孙德强, 等. 热水沉积区黑色页岩稀土元素特征及其地质意义——以贵州中部和东部地区下寒武统牛蹄塘组页岩为例[J]. 天然气工业, 2018, 38(5):44-51 doi: 10.3787/j.issn.1000-0976.2018.05.005

    JIA Zhibin, HOU Dujie, SUN Deqiang, et al. Characteristics and geological implications of rare earth elements in black shale in hydrothermal sedimentation areas: a case study from the Lower Cambrian Niutitang Fm shale in central and eastern Guizhou [J]. Natural Gas Industry, 2018, 38(5): 44-51. doi: 10.3787/j.issn.1000-0976.2018.05.005

    [12]

    谢国梁, 刘水根, 沈玉林, 等. 赣东北荷塘组页岩气成藏条件及有利区评价[J]. 中国矿业大学学报, 2015, 44(4):704-713

    XIE Guoliang, LIU Shuigen, SHEN Yulin, et al. Reservoir-forming conditions and favorable areas evaluation of shale gas reservoir in Hetang formation, northeastern Jiangxi area [J]. Journal of China University of Mining & Technology, 2015, 44(4): 704-713.

    [13]

    付常青, 朱炎铭, 陈尚斌. 浙西荷塘组页岩孔隙结构及分形特征研究[J]. 中国矿业大学学报, 2016, 45(1):77-86

    FU Changqing, ZHU Yanming, CHEN Shangbin. Pore structure and fractal features of Hetang formation shale in western Zhejiang [J]. Journal of China University of Mining & Technology, 2016, 45(1): 77-86.

    [14]

    樊佳莉. 下扬子地区下寒武统富有机质页岩的岩相与沉积环境[J]. 地质科技情报, 2017, 36(5):156-163

    FAN Jiali. Lithofacies and depositional setting of the lower cambrian organic-rich shale of the lower Yangtze Region, China [J]. Geological Science and Technology Information, 2017, 36(5): 156-163.

    [15]

    黄正清, 周道容, 李建青, 等. 下扬子地区寒武系页岩气成藏条件分析与资源潜力评价[J]. 石油实验地质, 2019, 41(1):94-98 doi: 10.11781/sysydz201901094

    HUANG Zhengqing, ZHOU Daorong, LI Jianqing, et al. Shale gas accumulation conditions and resource potential evaluation of the Cambrian in the Lower Yangtze area [J]. Petroleum Geology and Experiment, 2019, 41(1): 94-98. doi: 10.11781/sysydz201901094

    [16]

    薛耀松, 俞从流. 浙西、赣东北寒武系下统荷塘组岩石特征及沉积环境分析[J]. 地层学杂志, 1979, 3(4):283-293

    XUE Yaosong, YU Congliu. The analysis of rocks features and sedimentary of Lower Cambrian Hetang formation in west Zhejiang-northeast of Jiangxi [J]. Journal of Stratigraphy, 1979, 3(4): 283-293.

    [17]

    曾子轩. 浙西北下寒武统荷塘组硅质(页)岩成因及沉积环境研究[D]. 浙江大学硕士学位论文, 2019: 13-31.

    ZENG Zixuan. Research on origin and sedimentary environment of lower cambrian of hetang formation cherts in northwestern Zhejiang, China[D]. Master Dissertation of Zhejiang University, 2019: 13-31.

    [18]

    刘计勇, 张飞燕, 印燕铃. 下扬子下寒武统岩相古地理及烃源岩条件研究[J]. 海洋地质与第四纪地质, 2018, 38(3):85-95

    LIU Jiyong, ZHANG Feiyan, YIN Yanling. Lithofacies and paleogeographic study on late Cambrian hydrocarbon source rocks in Lower Yangtze region [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 85-95.

    [19]

    McLennan S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust [J]. Geochemistry, Geophysics, Geosystems, 2001, 2(4): 2000GC000109.

    [20]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes [J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [21]

    Murray R W, Brink M R B T, Gerlach D C, et al. Rare earth, major, and trace element composition of Monterey and DSDP chert and associated host sediment: assessing the influence of chemical fractionation during diagenesis [J]. Geochimica et Cosmochimica Acta, 1992, 56(7): 2657-2671. doi: 10.1016/0016-7037(92)90351-I

    [22]

    Shields G, Stille P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites [J]. Chemical Geology, 2001, 175(1-2): 29-48. doi: 10.1016/S0009-2541(00)00362-4

    [23]

    Bolhar R, van Kranendonk M J. A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates [J]. Precambrian Research, 2007, 155(3-4): 229-250. doi: 10.1016/j.precamres.2007.02.002

    [24]

    Yu Z H, Li H M, Li M X, et al. Hydrothermal signature in the axial-sediments from the Carlsberg Ridge in the northwest Indian Ocean [J]. Journal of Marine Systems, 2018, 180: 173-181. doi: 10.1016/j.jmarsys.2016.11.013

    [25]

    Kato Y, Nakao K, Isozaki Y. Geochemistry of Late Permian to Early Triassic pelagic cherts from southwest Japan: implications for an oceanic redox change [J]. Chemical Geology, 2002, 182(1): 15-34. doi: 10.1016/S0009-2541(01)00273-X

    [26]

    赵彦彦, 李三忠, 李达, 等. 碳酸盐(岩)的稀土元素特征及其古环境指示意义[J]. 大地构造与成矿学, 2019, 43(1):141-167

    ZHAO Yanyan, LI Sanzhong, LI Da, et al. Rare earth element geochemistry of carbonate and its paleoenvironmental implications [J]. Geotectonica et Metallogenia, 2019, 43(1): 141-167.

    [27]

    Allègre C, Minster J F. Quantitative models of trace element behavior in magmatic processes [J]. Earth and Planetary Science Letters, 1978, 38(1): 1-25. doi: 10.1016/0012-821X(78)90123-1

    [28]

    Kunzendorf H, Stoffers P, Gwozdz R. Regional variations of REE patterns in sediments from active plate boundaries [J]. Marine Geology, 1988, 84(3-4): 191-199. doi: 10.1016/0025-3227(88)90100-4

    [29]

    Sugahara H, Sugitani K, Mimura K, et al. A systematic rare-earth elements and yttrium study of Archean cherts at the Mount Goldsworthy greenstone belt in the Pilbara Craton: implications for the origin of microfossil-bearing black cherts [J]. Precambrian Research, 2010, 177(1-2): 73-87. doi: 10.1016/j.precamres.2009.10.005

    [30]

    Nozaki Y, Zhang J and Amakawa H. The fractionation between Y and Ho in the marine environment [J]. Earth and Planetary Science Letters, 1997, 148(1-2): 329-340. doi: 10.1016/S0012-821X(97)00034-4

    [31]

    杨宗玉, 罗平, 刘波, 等. 塔里木盆地阿克苏地区下寒武统玉尔吐斯组两套黑色岩系的差异及成因[J]. 岩石学报, 2017, 33(6):1893-1918

    YANG Zongyu, LUO Ping, LIU Bo, et al. The difference and sedimentation of two black rock series from Yurtus Formation during the earliest Cambrian in the Aksu area of Tarim Basin, Northwest China [J]. Acta Petrologica Sinica, 2017, 33(6): 1893-1918.

    [32]

    Alexander B W, Bau M, Andersson P, et al. Continentally-derived solutes in shallow Archean seawater: rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa [J]. Geochimica et Cosmochimica Acta, 2008, 72(2): 378-394. doi: 10.1016/j.gca.2007.10.028

    [33]

    Johannessen K C, Vander Roost J, Dahle H, et al. Environmental controls on biomineralization and Fe-mound formation in a low-temperature hydrothermal system at the Jan Mayen Vent Fields [J]. Geochimica et Cosmochimica Acta, 2017, 202: 101-123. doi: 10.1016/j.gca.2016.12.016

    [34]

    Murray R W. Chemical criteria to identify the depositional environment of chert: general principles and applications [J]. Sedimentary Geology, 1994, 90(3-4): 213-232. doi: 10.1016/0037-0738(94)90039-6

    [35]

    钱建民, 李海亭, 徐岳行, 等. 扬子地台东南缘黑色岩系(荷塘组)地球化学研究[J]. 矿物岩石, 2010, 30(2):95-102 doi: 10.3969/j.issn.1001-6872.2010.02.016

    QIAN Jianmin, LI Haiting, XU Yuehang, et al. Study on the geochemical characteristics of black rock series from the Hetang Formation in southeast margin of Yangtze Platform [J]. Journal of Mineralogy and Petrology, 2010, 30(2): 95-102. doi: 10.3969/j.issn.1001-6872.2010.02.016

    [36]

    Pirajno F, Grey K. Chert in the Palaeoproterozoic Bartle Member, Killara Formation, Yerrida Basin, Western Australia: a rift-related playa lake and thermal spring environment? [J]. Precambrian Research, 2002, 113(3-4): 169-192. doi: 10.1016/S0301-9268(01)00196-6

    [37]

    Wang J G, Chen D Z, Wang D, et al. Petrology and geochemistry of chert on the marginal zone of Yangtze Platform, western Hunan, South China, during the Ediacaran–Cambrian transition [J]. Sedimentology, 2012, 59(3): 809-829. doi: 10.1111/j.1365-3091.2011.01280.x

    [38]

    Zhou L, Wang Z X, Gao W L, et al. Provenance and tectonic setting of the Lower Cambrian Niutitang formation shales in the Yangtze platform, South China: implications for depositional setting of shales [J]. Geochemistry, 2019, 79(2): 384-398. doi: 10.1016/j.chemer.2019.05.001

    [39]

    Planavsky N, Bekker A, Rouxel O J, et al. Rare earth element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: new perspectives on the significance and mechanisms of deposition [J]. Geochimica et Cosmochimica Acta, 2010, 74(22): 6387-6405. doi: 10.1016/j.gca.2010.07.021

  • 加载中

(6)

(3)

计量
  • 文章访问数:  1004
  • PDF下载数:  20
  • 施引文献:  0
出版历程
收稿日期:  2020-03-12
修回日期:  2020-04-12
刊出日期:  2021-04-28

目录