南海东部次海盆地震背景噪声分析

刘亚楠, 刘保华, 刘晨光, 华清峰, 颜文华. 南海东部次海盆地震背景噪声分析[J]. 海洋地质与第四纪地质, 2021, 41(2): 109-117. doi: 10.16562/j.cnki.0256-1492.2020051501
引用本文: 刘亚楠, 刘保华, 刘晨光, 华清峰, 颜文华. 南海东部次海盆地震背景噪声分析[J]. 海洋地质与第四纪地质, 2021, 41(2): 109-117. doi: 10.16562/j.cnki.0256-1492.2020051501
LIU Yanan, LIU Baohua, LIU Chenguang, HUA Qingfeng, YAN Wenhua. Research on seismic background noise in the Eastern Subbasin of the South China Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 109-117. doi: 10.16562/j.cnki.0256-1492.2020051501
Citation: LIU Yanan, LIU Baohua, LIU Chenguang, HUA Qingfeng, YAN Wenhua. Research on seismic background noise in the Eastern Subbasin of the South China Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 109-117. doi: 10.16562/j.cnki.0256-1492.2020051501

南海东部次海盆地震背景噪声分析

  • 基金项目: 国家自然科学基金委员会-山东省人民政府海洋科学研究中心联合资助项目“海洋地质过程与环境”(U1606401);全球变化与海气相互作用专项“西太平洋俯冲带及弧后盆地体系”(GASI-GEOGE-02),“OBS海洋环境噪声数据整编”(GASI-01-01-01-24-OBS);中国大洋矿产资源研究开发协会项目“大西洋靶区多金属硫化物调查区综合地球物理异常与找矿应用”(DY135-S2-2-04);泰山学者工程专项经费(tspd20161007)
详细信息
    作者简介: 刘亚楠(1991—),男,博士研究生,主要从事海洋地球物理学研究,E-mail:oucliu@163.com
  • 中图分类号: P738

Research on seismic background noise in the Eastern Subbasin of the South China Sea

  • 背景噪声的强弱是影响地震台站观测的一个重要因素。获取背景噪声的分布特征对评估海底地震仪记录数据质量及对数据的降噪处理均具有重要的指示意义。利用概率密度函数方法获取台站数据的功率谱密度的概率分布特征并与全球背景噪声高值模型和低值模型进行对比是研究台站周围环境背景噪声水平的有利手段。本研究基于南海大规模的被动源海底地震仪台阵长期观测实验的部分数据,利用概率密度函数方法研究了南海的背景噪声。首先,在全频段上对背景噪声进行了分析,并与其他台站做了对比,发现海洋的背景噪声在微震段和低频段大于高值模型且在全频带上远大于陆基台站的背景噪声,这表明海底地震仪数据质量并不高;其次,对观测过程中出现的地震事件以及其他典型信号的概率密度分布进行了归纳总结,发现远震事件、近震事件和数据丢失现象分别具有不同的优势频段和特征,这对后续滤波处理和质量检查具有重要指示意义;最后,研究了背景噪声的时间变化特征,发现台风是导致微震段时间变化的主要原因。

  • 加载中
  • 图 1  海底地震仪台站分布图

    Figure 1. 

    图 2  台站HY15的三分量背景噪声功率谱密度的概率密度分布图两条蓝色实线分别代表全球背景噪声高值和全球背景噪声低值;黑色实线代表众数值。

    Figure 2. 

    图 3  台站HY17的三分量背景噪声功率谱密度的概率密度分布图两条蓝色实线分别代表全球背景噪声高值和全球背景噪声低值;黑色实线代表众数值。

    Figure 3. 

    图 4  安康台的三分量背景噪声功率谱密度的概率密度分布图两条蓝色实线分别代表全球背景噪声高值和全球背景噪声低值;黑色实线代表众数值。

    Figure 4. 

    图 5  台站HY16记录到的三分量远震事件波形

    Figure 5. 

    图 6  台站HY17记录到的三分量近震事件波形

    Figure 6. 

    图 7  台站HY15记录到的数据丢失现象

    Figure 7. 

    图 8  远震事件、近震事件和数据丢失现象的功率谱密度的概率密度函数分布图其中,上图为远震事件;中图为近震事件;下图代表数据丢失信号;两条蓝色实线分别代表全球背景噪声高值和全球背景噪声低值;黑色实线代表众数值。

    Figure 8. 

    图 9  台站HY15和HY17的背景噪声功率谱密度的时间变化图其中上面3幅图为台站HY15,下面3幅图为台站HY17,从左到右分别为垂直分量、水平分量1、水平分量2。

    Figure 9. 

    表 1  南海东部次海盆台站布放资料

    Table 1.  The deployment data of OBS

    台站编号东经北纬水深/m台站型号
    HY15117°32′16°30′3753Guralp CMG-40T
    HY16118°12′16°27′3920Guralp CMG-40T
    HY17118°48′16°12′3870Guralp CMG-40T
    下载: 导出CSV
  • [1]

    Agnew D C, Berger J. Vertical seismic noise at very low frequencies [J]. Journal of Geophysical Research, 1978, 83(B11): 5420-5424. doi: 10.1029/JB083iB11p05420

    [2]

    Berger J, Davis P, Ekström G. Ambient Earth noise: A survey of the global seismographic network [J]. Journal of Geophysical Research, 2004, 109: B11307. doi: 10.1029/2004JB003408

    [3]

    Webb S C. Broadband seismology and noise under the ocean [J]. Reviews of Geophysics, 1998, 36(1): 105-142. doi: 10.1029/97RG02287

    [4]

    Peterson J. Observations and modeling of seismic background noise[R]. U.S. Geological Survey Open File Report, 1993: 93-322.

    [5]

    McNamara D E, Buland R P. Ambient noise levels in the Continental United States [J]. Bulletin of the Seismological Society of America, 2004, 94(4): 1517-1527. doi: 10.1785/012003001

    [6]

    吴建平, 欧阳飚, 王未来, 等. 华北地区地震环境噪声特征研究[J]. 地震学报, 2012, 34(6):818-829

    WU Jianping, OUYANG Biao, WANG Weilai, et al. Ambient noise level of North China from temporary seismic array [J]. Acta Seismologica Sinica, 2012, 34(6): 818-829.

    [7]

    葛洪魁, 陈海潮, 欧阳飚, 等. 流动地震观测背景噪声的台基响应[J]. 地球物理学报, 2013, 56(3):857-868

    GE Hongkui, CHEN Haichao, OUYANG Biao, et al. Transportable seismometer response to seismic noise in vault [J]. Chinese Journal of Geophysics, 2013, 56(3): 857-868.

    [8]

    林彬华, 金星, 李军, 等. 台网噪声评估及其对气枪震源激发效果影响的研究[J]. 地震学报, 2017, 39(3):330-342, 451

    LIN Binhua, JIN Xing, LI Jun, et al. Station network ambient noise level evaluation and its influence on air gun source excitation effect [J]. Acta Seismologica Sinica, 2017, 39(3): 330-342, 451.

    [9]

    刘旭宙, 沈旭章, 张元生, 等. 基于噪声概率密度函数的地震计观测性能对比[J]. 地震学报, 2018, 40(4):461-470

    LIU Xuzhou, SHEN Xuzhang, ZHANG Yuansheng, et al. Comparison on different seismometers performance based on probability density functions [J]. Acta Seismologica Sinica, 2018, 40(4): 461-470.

    [10]

    Li C F, et al. Opening of the South China Sea and its implications for Southeast Asian tectonics since the late Mesozoic[R]. IODP Proposal, 2008.

    [11]

    Li C F, Li J B, Ding W W, et al. Seismic stratigraphy of the central South China Sea basin and implications for neotectonics [J]. Journal of Geophysical Research: Solid Earth, 2015, 120(3): 1377-1399. doi: 10.1002/2014JB011686

    [12]

    Li C F, Xu X, Lin J, et al. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP expedition 349 [J]. Geochemistry, Geophysics, Geosystems, 2014, 15(12): 4958-4983. doi: 10.1002/2014GC005567

    [13]

    Zhao M H, He E Y, Sibuet J C, et al. Postseafloor spreading volcanism in the central East South China Sea and its formation through an extremely thin oceanic crust [J]. Geochemistry, Geophysics, Geosystems, 2018, 19(3): 621-641. doi: 10.1002/2017GC007034

    [14]

    Lei J S, Zhao D P, Steinberger B, et al. New seismic constraints on the upper mantle structure of the Hainan plume [J]. Physics of the Earth and Planetary Interiors, 2009, 173(1-2): 33-50. doi: 10.1016/j.pepi.2008.10.013

    [15]

    Xia S H, Zhao D P, Sun J L, et al. Teleseismic imaging of the mantle beneath southernmost China: New insights into the Hainan plume [J]. Gondwana Research, 2016, 36: 46-56. doi: 10.1016/j.gr.2016.05.003

    [16]

    Liu C G, Hua Q F, Pei Y L, et al. Passive-source ocean bottom seismograph (OBS) array experiment in South China Sea and data quality analyses [J]. Chinese Science Bulletin, 2014, 59(33): 4524-4535. doi: 10.1007/s11434-014-0369-4

    [17]

    Laske G, Collins J A, Wolfe C J, et al. Probing the Hawaiian hot spot with new broadband ocean bottom instruments [J]. EOS Transactions American Geophysical Union, 2009, 90(41): 362-363. doi: 10.1029/2009EO410002

    [18]

    Toomey D R, Allen R M, Barclay A H, et al. The Cascadia initiative: A sea change in seismological studies of subduction zones [J]. Oceanography, 2014, 27(2): 138-150. doi: 10.5670/oceanog.2014.49

    [19]

    Stähler S C, Sigloch K, Hosseini K, et al. Performance report of the RHUM-RUM ocean bottom seismometer network around La Reunion, western Indian Ocean [J]. Advances in Geosciences, 2016, 41: 43-63. doi: 10.5194/adgeo-41-43-2016

    [20]

    Xiao H, Xue M, Yang T, et al. The characteristics of microseisms in South China Sea: results from a combined data set of OBSs, broadband land seismic stations, and a global wave height model [J]. Journal of Geophysical Research: Solid Earth, 2018, 123(5): 3923-3942. doi: 10.1029/2017JB015291

    [21]

    Collins J A, Vernon F L, Orcutt J A, et al. Broadband seismology in the oceans: Lessons from the ocean seismic network pilot experiment [J]. Journal of Geophysical Research, 2001, 28(1): 49-52. doi: 10.1029/2000GL011638

    [22]

    Crawford W C, Webb S C. Identifying and removing tilt noise from low-frequency (<0.1 Hz) seafloor vertical seismic data [J]. Bulletin of the Seismological Society of America, 2000, 90(4): 952-963. doi: 10.1785/0119990121

    [23]

    Dahm T, Tilmann F, Morgan J P. Seismic broadband ocean-bottom data and noise observed with free-fall stations: Experiences from long-term deployments in the North Atlantic and the Tyrrhenian Sea [J]. Bulletin of the Seismological Society of America, 2006, 96(2): 647-664. doi: 10.1785/0120040064

    [24]

    Araki E, Shinohara M, Sacks S, et al. Improvement of seismic observation in the ocean by use of seafloor boreholes [J]. Bulletin of the Seismological Society of America, 2004, 94(2): 678-690. doi: 10.1785/0120020088

    [25]

    Longuet-Higgins M S. A theory of the origin of microseisms [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1950, 243(857): 1-35.

    [26]

    Stephen R A, Spiess F N, Collins J A, et al. Ocean seismic network pilot experiment [J]. Geochemistry, Geophysics, Geosystems, 2003, 4: 1092. doi: 10.1029/2002GC000485

    [27]

    Bromirski P D, Duennebier F K, Stephen R A. Mid-ocean microseisms [J]. Geochemistry, Geophysics, Geosystems, 2005, 6: Q04009. doi: 10.1029/2004GC000768

    [28]

    Stutzman E, Roult G, Astiz L. Geoscope station noise levels [J]. Bulletin of the Seismological Society of America, 2000, 90(3): 690-701. doi: 10.1785/0119990025

  • 加载中

(9)

(1)

计量
  • 文章访问数:  1277
  • PDF下载数:  45
  • 施引文献:  0
出版历程
收稿日期:  2020-05-15
修回日期:  2020-07-07
刊出日期:  2021-04-28

目录