Deep water depositional system in Rovuma Basin, East Africa and its bearing on hydrocarbon exploration
-
摘要:
利用高分辨率三维地震资料、测井和钻井数据,对东非鲁伍马盆地深水沉积特征进行了系统刻画。根据深水沉积体的地震相特征,识别出峡谷、水道、漫溢沉积、朵体、块体搬运沉积(MTDs)和凝缩段等深水沉积单元,建立了地震识别图版。分析总结了水道和朵体的岩性特征、电性特征和储层物性特征,砂岩具有低伽马(GR)和高电阻(RT)特征,厚层砂岩GR曲线呈“箱型”,有泥岩夹层的砂岩段呈叠加的“钟型”特点;储层压实程度弱,发育原生粒间孔隙,具有中—高孔、中—高渗的特征。结合成藏条件研究,认为由水道和朵体浊积砂岩储层、凝缩段和漫溢沉积泥岩盖层、天然堤和MTDs为侧向遮挡等要素构成的油气储、盖配置关系,是研究区油气成藏的一个关键因素,对深水油气勘探具有一定的指导意义。
Abstract:Based on the high-resolution 3D seismic data, in addition to well logging data and drilling data, the deep-water deposits in the Rovuma Basin of East Africa are systematically studied in this paper. According to the seismic facies of the deep-water depositional bodies, the architectural elements of the system, such as the canyon, channel, overbank, lobe, mass-transport deposits (MTDs) and condensed layers are recognized, and the seismic identification criteria established, while the lithologic, electrical and reservoir-physical characteristics are analyzed and summarized. Sandstones are usually low in gamma ray (GR) and high in electrical resistance (RT). The GR curve of thick sandstone is “boxlike” and the sandstone sequence intercalating mudstone layers in superimposed “bell-shape”. The compaction of reservoirs is rather weak and the primary intergranular pores are relatively developed, and, therefore, medium to high porosity and permeability are widely developed. The overall study of reservoir forming conditions suggest that there occur a good hydrocarbon forming system with channel and lobe turbidite sandstone as reservoirs, condensed section and overbank mudstone as caprocks, and levee and MTDs for lateral plugging. The model has significant implications for deep-water oil and gas exploration.
-
-
[1] Pettingill H S, Weimer P. Worldwide deepwater exploration and production: Past, present, and future [J]. The Leading Edge, 2002, 21(4): 371-376. doi: 10.1190/1.1471600
[2] 张艳秋, 张礼貌, 李静黎, 等. 近十年全球石油行业上游勘探投资及勘探新增储量分析[J]. 国际石油经济, 2013, 21(9):6-10 doi: 10.3969/j.issn.1004-7298.2013.09.002
ZHANG Yanqiu, ZHANG Limao, LI Jingli, et al. Comparison over the last dacade between the global oil industry’s upstream exploration investment and incremental reserves [J]. International Petroleum Economics, 2013, 21(9): 6-10. doi: 10.3969/j.issn.1004-7298.2013.09.002
[3] 杨丽丽, 王陆新, 潘继平. 全球深水油气勘探开发现状、前景及启示[J]. 中国矿业, 2017, 26(S2):14-17
YANG Lili, WANG Luxin, PAN Jiping. Situation and prospect of global deepwater oil and gas exploration and development [J]. China Mining Magazine, 2017, 26(S2): 14-17.
[4] 金钟, 张礼貌. 国际石油公司上游发展动向探析[J]. 国际石油经济, 2019, 27(5):54-63 doi: 10.3969/j.issn.1004-7298.2019.05.008
JIN Zhong, ZHANG Limao. Analysis on the upstream development trend of IOCs [J]. International Petroleum Economics, 2019, 27(5): 54-63. doi: 10.3969/j.issn.1004-7298.2019.05.008
[5] 庞雄, 陈长民, 朱明, 等. 深水沉积研究前缘问题[J]. 地质论评, 2007, 53(1):36-43 doi: 10.3321/j.issn:0371-5736.2007.01.006
PANG Xiong, CHEN Changmin, ZHU Ming, et al. Frontier of the deep-water deposition study [J]. Geological Review, 2007, 53(1): 36-43. doi: 10.3321/j.issn:0371-5736.2007.01.006
[6] Stow D A V, Mayall M. Deep-water sedimentary systems: New models for the 21st century [J]. Marine and Petroleum Geology, 2000, 17(2): 125-135. doi: 10.1016/S0264-8172(99)00064-1
[7] 胡孝林, 刘新颖, 刘琼, 等. 深水沉积研究进展及前缘问题[J]. 中国海上油气, 2015, 27(1):10-18
HU Xiaolin, LIU Xinying, LIU Qiong, et al. Advances in research on deep water deposition and their frontier problems [J]. China Offshore Oil and Gas, 2015, 27(1): 10-18.
[8] 张功成, 屈红军, 赵冲, 等. 全球深水油气勘探40年大发现及未来勘探前景[J]. 天然气地球科学, 2017, 28(10):1447-1477
ZHANG Gongcheng, QU Hongjun, ZHAO Chong, et al. Giant discoveries of oil and gas exploration in global deepwaters in 40 years and the prospect of exploration [J]. Natural Gas Geoscience, 2017, 28(10): 1447-1477.
[9] 张功成, 米立军, 屈红军, 等. 全球深水盆地群分布格局与油气特征[J]. 石油学报, 2011, 32(3):369-378 doi: 10.7623/syxb201103001
ZHANG Gongcheng, MI Lijun, QU Hongjun, et al. A basic distributional framework of global deepwater basins and hydrocarbon characteristics [J]. Acta Petrolei Sinica, 2011, 32(3): 369-378. doi: 10.7623/syxb201103001
[10] 张宁宁, 王青, 王建君, 等. 近20年世界油气新发现特征与勘探趋势展望[J]. 中国石油勘探, 2018, 23(1):44-53 doi: 10.3969/j.issn.1672-7703.2018.01.005
ZHANG Ningning, WANG Qing, WANG Jianjun, et al. Characteristics of oil and gas discoveries in recent 20 years and future exploration in the world [J]. China Petroleum Exploration, 2018, 23(1): 44-53. doi: 10.3969/j.issn.1672-7703.2018.01.005
[11] 蔡露露, 王雅宁, 王颖, 等. 西非深水沉积类型特征及油气勘探意义[J]. 石油学报, 2016, 37(S1):131-142 doi: 10.7623/syxb2016S1013
CAI Lulu, WANG Yaning, WANG Ying, et al. Type features and hydrocarbon exploration significance of deepwater sedimentary in West Africa [J]. Acta Petrolei Sinica, 2016, 37(S1): 131-142. doi: 10.7623/syxb2016S1013
[12] 张光亚, 刘小兵, 温志新, 等. 东非被动大陆边缘盆地构造-沉积特征及其对大气田富集的控制作用[J]. 中国石油勘探, 2015, 20(4):71-80 doi: 10.3969/j.issn.1672-7703.2015.04.008
ZHANG Guangya, LIU Xiaobing, WEN Zhixin, et al. Structural and sedimentary characteristics of passive continental margin basins in East Africa and their effect on the formation of giant gas fields [J]. China Petroleum Exploration, 2015, 20(4): 71-80. doi: 10.3969/j.issn.1672-7703.2015.04.008
[13] 马贵明, 马宏霞, 邵大力, 等. 孟加拉湾若开盆地深水沉积体系结构单元类型及演化模式[J]. 海相油气地质, 2016, 21(1):41-51 doi: 10.3969/j.issn.1672-9854.2016.01.007
MA Guiming, MA Hongxia, SHAO Dali, et al. Structural units and evolution model of deepwater depositional system in Rakhine Basin, Bay of Bengal [J]. Marine Origin Petroleum Geology, 2016, 21(1): 41-51. doi: 10.3969/j.issn.1672-9854.2016.01.007
[14] 王英民, 王海荣, 邱燕, 等. 深水沉积的动力学机制和响应[J]. 沉积学报, 2007, 25(4):495-504 doi: 10.3969/j.issn.1000-0550.2007.04.002
WANG Yingmin, WANG Hairong, QIU Yan, et al. Process of dynamics and its response of deep-water sedimentation [J]. Acta Sedimentologica Sinica, 2007, 25(4): 495-504. doi: 10.3969/j.issn.1000-0550.2007.04.002
[15] Chen Y H, Yao G S, Wang X F, et al. Flow processes of the interaction between turbidity flows and bottom currents in sinuous unidirectionally migrating channels: An example from the Oligocene channels in the Rovuma Basin, offshore Mozambique [J]. Sedimentary Geology, 2020, 404: 105680. doi: 10.1016/j.sedgeo.2020.105680
[16] 鲁银涛, 范国章, 杨慧良, 等. 延伸的弹性波阻抗反演在东非始新世深水沉积体系刻画中的应用[J]. 中国造船, 2019, 60(4):237-246 doi: 10.3969/j.issn.1000-4882.2019.04.027
LU Yintao, FAN Guozhang, YANG Huiliang, et al. Application of extended elastic inversion in illustrating the Eocene deep water sediment system in offshore East Africa [J]. Shipbuilding of China, 2019, 60(4): 237-246. doi: 10.3969/j.issn.1000-4882.2019.04.027
[17] IHS Energy. Rovuma Basin[DB/CD]. Houston: IHS Inc., 2014.
[18] 曹全斌, 唐鹏程, 吕福亮, 等. 东非鲁伍马盆地深水浊积砂岩气藏成藏条件及控制因素[J]. 海相油气地质, 2018, 23(3):65-72 doi: 10.3969/j.issn.1672-9854.2018.03.007
CAO Quanbin, TANG Pengcheng, LÜ Fuliang, et al. Formation conditions and controlling factors of gas-bearing turbidite sand reservoirs in deep water deposits in the Rovuma Basin, East Africa [J]. Marine Origin Petroleum Geology, 2018, 23(3): 65-72. doi: 10.3969/j.issn.1672-9854.2018.03.007
[19] 陈宇航, 朱增伍, 贾鹏, 等. 重力流沉积砂岩的成因、改造及油气勘探意义[J]. 地质科技情报, 2017, 36(5):148-155
CHEN Yuhang, ZHU Zengwu, JIA Peng, et al. Genetic mechanism and rework of deep-water sedimentary sand and its significance for petroleum exploration [J]. Geological Science and Technology Information, 2017, 36(5): 148-155.
[20] Shanmugam G. 50 years of the turbidite paradigm (1950s-1990s): deep-water processes and facies models-a critical perspective [J]. Marine & Petroleum Geology, 2000, 17(2): 285-342.
[21] 王大伟, 吴时国, 吕福亮, 等. 南海深水块体搬运沉积体系及其油气勘探意义[J]. 中国石油大学学报: 自然科学版, 2011, 35(5):14-19
WANG Dawei, WU Shiguo, LÜ Fuliang, et al. Mass transport deposits and its significance for oil & gas exploration in deep-water regions of South China Sea [J]. Journal of China University of Petroleum, 2011, 35(5): 14-19.
-