Evolution of gas hydrate stability zone in the deep water of Dongsha sea area since the Last Glaciation Maximum
-
摘要:
利用基于热力学理论的CSMHYD程序,模拟预测了末次冰期以来南海东沙海域深水区天然气水合物稳定带(GHSZ)的演化特征,同时讨论了海平面、底水温度对该区天然气水合物稳定带变化的影响,以及水合物分解对环境的影响。结果表明:①水深超过595 m的海域具备形成天然气水合物的环境条件;GHSZ平均厚度可达245 m,其中最厚区位于研究区东部,超过380 m,其次为东沙陆坡段与台湾浅滩陆坡段的结合部。②末次冰期(LGM)以来东沙海域GHSZ厚度呈现不对称旋回变化,按照时间由老到新可以分为TC1、TC2、TC3、TC4和TC5共5个完整的旋回。稳定带变化的减薄半旋回持续时间要长于增厚半旋回。TC1—TC4旋回内GHSZ厚度变化受海平面升降的控制,TC5旋回内稳定带厚度变化受到海底温度的控制。③在由陆缘向中央海盆方向逐渐增大的高地温梯度背景下,LGM以来海底温度和海平面变化对GHSZ的影响在中层水范围内大于深层水;同时水柱引起的压力效应在中层水深度范围内相对较大,深层水范围内海平面变化对GHSZ的影响十分有限。东沙海域CaCO3含量异常降低可能受水合物分解释放的甲烷气进入水体后引起海水酸化的影响。
Abstract:The evolutionary history of the gas hydrate stability zone (GHSZ) in the Dongsha deep water area since the last glacial maximum (LGM) is simulated and predicted using the CSMHYD program, and the fluctuations of sea level and bottom water temperature and their effects on the thickness of gas hydrate stability zone as well as the effects of hydrate decomposition on environment are carefully investigated and discussed. The results show that: (1) Gas hydrate could form in the sea area at a water depth more than 595 m; the current theoretical thickness of GHSZ is 245 m on average, and the maximum could be over 380 m which is located in the eastern part of the study area. Another area with large thickness is found at the juncture of the Dongsha continental slope and the Taiwan shoal continental slope. (2) The thickness of GHSZ in the Dongsha sea area has changed in an asymmetrical pattern since the LGM. It can be divided chronologically into five complete cycles, named TC1, TC2, TC3, TC4 and TC5 respectively. The thinning half-cycles are longer in time than those of the thickening ones. The thickness of GHSZ in cycles of TC1-TC4 is controlled by sea level fluctuation, while the thickness of cycle TC5 mainly controlled by sea bottom temperature. (3) The seabed temperature and sea level changes bring stronger effects on GHSZ thickness in the intermediate water area rather than in the deep water area. Meanwhile, the pressure effect is relatively obvious in the intermediate water depth area. The influence of sea level variation on GHSZ in the deep water area is limited. The abnormal decrease in CaCO3 content in the Dongsha sea area is possibly due to the acidification caused by the methane released from gas hydrates dissociation.
-
图 2 模拟天然气水合物稳点带演化史所采用的相对海平面变化和温度变化曲线[20]
Figure 2.
-
[1] Majorowicz J, Safanda J, Osadetz K. Inferred gas hydrate and permafrost stability history models linked to climate change in the Beaufort-Mackenzie Basin, Arctic Canada [J]. Climate of the Past, 2012, 8(2): 667-682. doi: 10.5194/cp-8-667-2012
[2] Handwerger A L, Rempel A W, Skarbek R M. Submarine landslides triggered by destabilization of high-saturation hydrate anomalies [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(7): 2429-2445. doi: 10.1002/2016GC006706
[3] Riboulot V, Ker S, Sultan N, et al. Freshwater lake to salt-water sea causing widespread hydrate dissociation in the Black Sea [J]. Nature Communications, 2018, 9(1): 117. doi: 10.1038/s41467-017-02271-z
[4] Serie C, Huuse M, Schødt N H. Gas hydrate pingoes: Deep seafloor evidence of focused fluid flow on continental margins [J]. Geology, 2012, 40(3): 207-210. doi: 10.1130/G32690.1
[5] 叶黎明, 初凤友, 葛倩, 等. 新仙女木末期南海北部天然气水合物分解事件[J]. 地球科学-中国地质大学学报, 2013, 38(6):1299-1308 doi: 10.3799/dqkx.2013.127
YE Liming, CHU Fengyou, GE Qian, et al. A rapid gas hydrate dissociation in the northern South China Sea since the Late Younger Dryas [J]. Earth Science-Journal of China University of Geosciences, 2013, 38(6): 1299-1308. doi: 10.3799/dqkx.2013.127
[6] 陈芳, 陆红锋, 刘坚, 等. 南海东北部陆坡天然气水合物多期次分解的沉积地球化学响应[J]. 地球科学-中国地质大学学报, 2016, 41(10):1619-1629 doi: 10.3799/dqkx.2016.120
CHEN Fang, LU Hongfeng, LIU Jian, et al. Sedimentary geochemical response to gas hydrate episodic release on the northeastern slope of the South China Sea [J]. Earth Science-Journal of China University of Geosciences, 2016, 41(10): 1619-1629. doi: 10.3799/dqkx.2016.120
[7] Musgrave R J, Bangs N L, Larrasoaña J C, et al. Rise of the base of the gas hydrate zone since the last glacial recorded by rock magnetism [J]. Geology, 2006, 34(2): 117-120. doi: 10.1130/G22008.1
[8] 宋海斌, 江为为, 张岭. 海洋天然气水合物的地球物理研究(Ⅳ): 双似海底反射[J]. 地球物理学进展, 2003, 18(3):497-502
SONG Haibin, JIANG Weiwei, ZHANG Ling. Geophysical researches on marine gas hydrates(Ⅳ): Double bottom simulating reflections [J]. Progress in Geophysics, 2003, 18(3): 497-502.
[9] Zander T, Haeckel M, Berndt C, et al. On the origin of multiple BSRs in the Danube deep-sea fan, Black Sea [J]. Earth & Planetary Science Letters, 2017, 462: 15-25.
[10] 张光学, 陈芳, 沙志彬, 等. 南海东北部天然气水合物成藏演化地质过程[J]. 地学前缘, 2017, 24(4):15-23
ZHANG Guangxue, CHEN Fang, SHA Zhibin, et al. The geological evolution process of natural gas hydrate reservoirs in the northeastern South China Sea [J]. Earth Science Frontiers, 2017, 24(4): 15-23.
[11] 陈芳, 庄畅, 张光学, 等. 南海东沙海域末次冰期异常沉积事件与水合物分解[J]. 地球科学-中国地质大学学报, 2014, 39(11):1617-1616
CHEN Fang, ZHUANG Chang, ZHANG Guangxue, et al. Abnormal sedimentary events and gas hydrate dissociation in Dongsha area of the South China Sea during Last Glacial Period [J]. Earth Science-Journal of China University of Geosciences, 2014, 39(11): 1617-1616.
[12] 殷绍如, 王嘹亮, 郭依群, 等. 东沙海底峡谷的地貌沉积特征及成因[J]. 中国科学: 地球科学, 2015, 58(6):971-985 doi: 10.1007/s11430-014-5044-8
YIN Shaoru, WANG Liaoliang, GUO Yiqun, et al. Morphology, sedimentary characteristics, and origin of the Dongsha submarine canyon in the northeastern continental slope of the South China Sea [J]. Science China Earth Sciences, 2015, 58(6): 971-985. doi: 10.1007/s11430-014-5044-8
[13] Shao L, Li X J, Geng J H, et al. Deep water bottom current deposition in the northern South China Sea [J]. Science in China Series D: Earth Sciences, 2007, 50(7): 1060-1066. doi: 10.1007/s11430-007-0015-y
[14] Chen C T A, Wang S L. Influence of intermediate water in the western Okinawa Trough by the outflow from the South China Sea [J]. Journal of Geophysical Research, 1998, 103(C6): 12683-12688. doi: 10.1029/98JC00366
[15] 李前裕, 赵泉鸿, 钟广法, 等. 新近纪南海深层水的增氧与分层[J]. 地球科学-中国地质大学学报, 2008, 33(1):1-11 doi: 10.3799/dqkx.2008.001
LI Qianyu, ZHAO Quanhong, ZHONG Guangfa, et al. Deep water ventilation and stratification in the Neogene South China Sea [J]. Earth Science-Journal of China University of Geosciences, 2008, 33(1): 1-11. doi: 10.3799/dqkx.2008.001
[16] Schlitzer R. Ocean Data View Software[EB/OL]. http://odv.awi.de/ (last access: 7 May 2015), 2009.
[17] Sloan E D, Koh C A. Clathrate Hydrates of Natural Gases[M]. 3rd ed. Florida: CRC Press, 2008.
[18] Zeng L L, Wang Q, Xie Q, et al. Hydrographic field investigations in the Northern South China Sea by open cruises during 2004-2013 [J]. Science Bulletin, 2015, 60(6): 607-615. doi: 10.1007/s11434-015-0733-z
[19] Bintanja R, van de Wal R S W, Oerlemans J. Modelled atmospheric temperatures and global sea levels over the past million years [J]. Nature, 2005, 437(7055): 125-128. doi: 10.1038/nature03975
[20] Bates S L, Siddall M, Waelbroeck C. Hydrographic variations in deep ocean temperature over the mid-Pleistocene transition [J]. Quaternary Science Reviews, 2014, 88: 147-158. doi: 10.1016/j.quascirev.2014.01.020
[21] Shyu C T, Chen Y J, Chiang S T, et al. Heat flow measurements over bottom simulating reflectors, offshore southwestern Taiwan [J]. Terrestrial, Atmospheric and Oceanic Sciences, 2006, 17(4): 845-869. doi: 10.3319/TAO.2006.17.4.845(GH)
[22] Yang X Q, Shi X B, Zhao J F, et al. Bottom water temperature measurements in the South China Sea, eastern Indian Ocean and western Pacific Ocean [J]. Journal of Tropical Oceanography, 2018, 37(5): 86-97.
[23] Kennett J P, Cannariato K G, Hendy I L, et al. Carbon isotopic evidence for methane hydrate instability during quaternary interstadials [J]. Science, 2000, 288(5463): 128-133. doi: 10.1126/science.288.5463.128
[24] 徐行, 李亚敏, 罗贤虎, 等. 南海北部陆坡水合物勘探区典型站位不同类型热流对比[J]. 地球物理学报, 2012, 55(3):998-1006
XU Xing, LI Yamin, LUO Xianhu, et al. Comparison of different-type heat flows at typical sites in natural gas hydrate exploration area on the northern slope of the South China Sea [J]. Chinese Journal of Geophysics, 2012, 55(3): 998-1006.
[25] 施小斌, 王振峰, 蒋海燕, 等. 张裂型盆地地热参数的垂向变化与琼东南盆地热流分布特征[J]. 地球物理学报, 2015, 58(3):939-952
SHI Xiaobin, WANG Zhenfeng, JIANG Haiyan, et al. Vertical variations of geothermal parameters in rifted basins and heat flow distribution features of the Qiongdongnan Basin [J]. Chinese Journal of Geophysics, 2015, 58(3): 939-952.
[26] 施小斌, 于传海, 陈梅, 等. 南海北部陆缘热流变化特征及其影响因素分析[J]. 地学前缘, 2017, 24(3):56-64
SHI Xiaobin, YU Chuanhai, CHEN Mei, et al. Analyses of variation features and influential factors of heat flow in the northern margin of the South China Sea [J]. Earth Science Frontiers, 2017, 24(3): 56-64.
[27] Liao W Z, Lin A T, Liu C S, et al. Heat flow in the rifted continental margin of the South China Sea near Taiwan and its tectonic implications [J]. Journal of Asian Earth Sciences, 2014, 92: 233-244. doi: 10.1016/j.jseaes.2014.01.003
[28] 栾锡武, 张亮, 岳保静. 南海北部陆坡海底火山活动对天然气水合物成藏的影响[J]. 现代地质, 2010, 24(3):424-432
LUAN Xiwu, ZHANG Liang, YUE Baojing. Influence on gas hydrates formation produced by volcanic activity on northern South China Sea slope [J]. Geoscience, 2010, 24(3): 424-432.
[29] Wallmann K, Pinero E, Burwicz E, et al. The global inventory of methane hydrate in marine sediments: A theoretical approach [J]. Energies, 2012, 5(7): 2449-2498. doi: 10.3390/en5072449
[30] Johnson J E, Phillips S C, Torres M E, et al. Influence of total organic carbon deposition on the inventory of gas hydrate in the Indian continental margins [J]. Marine & Petroleum Geology, 2014, 58: 406-424.
[31] Matveva T V, Soloviev V A. Geological control over gas hydrate accumulation on the Blake outer ridge, western North Atlantic (from DSDP and ODP data) [J]. Russian Geology and Geophysics, 2002, 43(7): 662-671.
[32] Riedel M, Collett T S, Kumar P, et al. Seismic imaging of a fractured gas hydrate system in the Krishna-Godavari Basin offshore India [J]. Marine and Petroleum Geology, 2010, 27(7): 1476-1493. doi: 10.1016/j.marpetgeo.2010.06.002
[33] Boswell R, Frye M, Shelander D, et al. Architecture of gas-hydrate-bearing sands from Walker Ridge 313, Green Canyon 955, and Alaminos Canyon 21: Northern deepwater Gulf of Mexico [J]. Marine and Petroleum Geology, 2012, 34(1): 134-149. doi: 10.1016/j.marpetgeo.2011.08.010
[34] Noguchi S, Shimoda N, Takano O, et al. 3-D internal architecture of methane hydrate-bearing turbidite channels in the eastern Nankai Trough, Japan [J]. Marine and Petroleum Geology, 2011, 28(10): 1817-1828. doi: 10.1016/j.marpetgeo.2011.02.004
[35] 陈芳, 苏新, Nurnberg D, et al. 南海东沙海域末次冰期最盛期以来的沉积特征[J]. 海洋地质与第四纪地质, 2006, 26(6):9-17
CHEN Fang, SU Xin, Nurnberg D, et al. Lithologic features of sediments characterized by high sedimentation rates since the last glacial maximum from dongsha area of the south china sea [J]. Marine Geology and Quaternary Geology, 2006, 26(6): 9-17.
[36] 赵绍华, 刘志飞, 陈全, 等. 南海北部末次冰期以来深水沉积物组成及其堆积速率的时空变化特征[J]. 中国科学: 地球科学, 2017, 60(7):1368-1381 doi: 10.1007/s11430-016-9058-6
ZHAO Shaohua, LIU Zhifei, CHEN Quan, et al. Spatiotemporal variations of deep-sea sediment components and their fluxes since the last glaciation in the northern South China Sea [J]. Science China Earth Sciences, 2017, 60(7): 1368-1381. doi: 10.1007/s11430-016-9058-6
[37] Huang W, Wang P X. A quantitative approach to deep-water sedimentation in the South China Sea: Changes since the last glaciation [J]. Science in China Series D: Earth Sciences, 1998, 41(2): 195-201.
[38] Li L, Liu H J, Zhang X, et al. BSRs, estimated heat flow, hydrate-related gas volume and their implications for methane seepage and gas hydrate in the Dongsha region, northern South China Sea [J]. Marine and Petroleum Geology, 2015, 67: 785-794. doi: 10.1016/j.marpetgeo.2015.07.008
[39] Mienert J, Vanneste M, Bünz S, et al. Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga Slide [J]. Marine and Petroleum Geology, 2005, 22(1-2): 233-244. doi: 10.1016/j.marpetgeo.2004.10.018
[40] 刘斌. 南海北部陆坡东沙海域海底丘状体气体与水合物分布[J]. 海洋学报, 2017, 39(3):68-75
LIU Bin. Gas and gas hydrate distribution around seafloor mound in the Dongsha area, north slope of the South China Sea [J]. Haiyang Xuebao, 2017, 39(3): 68-75.
[41] 张丙坤, 李三忠, 夏真, 等. 南海北部海底滑坡与天然气水合物形成与分解的时序性[J]. 大地构造与成矿学, 2014, 38(2):434-440
ZHANG Bingkun, LI Sanzhong, XIA Zhen, et al. Time sequence of submarine landslides and gas hydrates in the northern South China Sea [J]. Geotectonica et Metallogenia, 2014, 38(2): 434-440.
[42] 黄怡, 王淑红, 颜文, 等. 南海北部东沙海域天然气水合物分解事件及其与海底滑塌的关系[J]. 热带海洋学报, 2018, 37(4):61-69
HUANG Yi, WANG Shuhong, YAN Wen, et al. Gas hydrate dissociation event and its relationship with submarine slide in Dongsha Area of northern South China Sea [J]. Journal of Tropical Oceanography, 2018, 37(4): 61-69.