基于分形纹理特征的侧扫声呐图像沉船识别方法研究

董凌宇, 单瑞, 刘慧敏, 于得水, 杜凯. 基于分形纹理特征的侧扫声呐图像沉船识别方法研究[J]. 海洋地质与第四纪地质, 2021, 41(4): 232-239. doi: 10.16562/j.cnki.0256-1492.2020070301
引用本文: 董凌宇, 单瑞, 刘慧敏, 于得水, 杜凯. 基于分形纹理特征的侧扫声呐图像沉船识别方法研究[J]. 海洋地质与第四纪地质, 2021, 41(4): 232-239. doi: 10.16562/j.cnki.0256-1492.2020070301
DONG Lingyu, SHAN Rui, LIU Huimin, YU Deshui, DU Kai. Shipwreck identification with side scan sonar image based on fractal texture[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 232-239. doi: 10.16562/j.cnki.0256-1492.2020070301
Citation: DONG Lingyu, SHAN Rui, LIU Huimin, YU Deshui, DU Kai. Shipwreck identification with side scan sonar image based on fractal texture[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 232-239. doi: 10.16562/j.cnki.0256-1492.2020070301

基于分形纹理特征的侧扫声呐图像沉船识别方法研究

  • 基金项目: 国家自然科学基金“高频GNSS单点测速数据提取海浪参数方法研究”(41406115);中国地质调查局项目“深海调查-测量”(DD20191003);青岛市南区科技发展资金项目“轻便型GNSS浪潮测量浮标关键技术研究”(2016-3-015-ZH)
详细信息
    作者简介: 董凌宇(1994—),男,硕士,研究实习员,主要从事地球物理数据处理与方法研究,E-mail:17663985486@163.com
    通讯作者: 单瑞(1985—),男,硕士,助理研究员,主要从事海洋地球物理及海洋测绘研究工作,E-mail:shanrui416@163.com
  • 中图分类号: P714.8

Shipwreck identification with side scan sonar image based on fractal texture

More Information
  • 为提高侧扫声呐图像中沉船等目标信息的识别精度和识别效率,根据盒维数、毯维数与多重分形谱的侧扫声呐图像纹理特征提取算法,构建了基于分形纹理特征的Adaboost级联分类器沉船目标识别流程。结合实测侧扫声呐图像数据进行水下沉船识别实验,并与灰度共生矩阵和Tamura纹理特征的识别结果进行对比。研究表明,基于分形纹理特征的识别方法综合考虑了图像全局与局部纹理特征,且不依赖人工选取阈值参数与特征向量,可有效提高目标识别精度和识别效率。

  • 加载中
  • 图 1  Adaboost级联分类器

    Figure 1. 

    图 2  基于分形纹理特征的Adaboost目标识别流程

    Figure 2. 

    图 3  目标识别中的正样本与负样本

    Figure 3. 

    图 4  盒维数计算

    Figure 4. 

    图 5  不同毯子厚度的分类结果比较

    Figure 5. 

    图 6  不同样本的多重分形谱结果

    Figure 6. 

    表 1  沉船及非沉船目标的多重分形谱参数

    Table 1.  Parameters of multifractal spectrum of shipwrecked and non-wrecked targets

    目标αminαmaxfminfmaxΔαΔf
    沉船11.812.960.072.001.151.93
    沉船21.922.211.682.000.290.32
    沉船31.902.351.132.000.450.87
    非沉船11.992.041.752.000.050.25
    非沉船21.982.051.752.000.070.25
    非沉船31.962.031.802.000.070.20
      注:①αminαmax分别代表了图像测度集的最小概率和最大概率,其差值Δα表明图像在概率测度分布中的差异程度,Δα越大则图像各测度区域和分形层次的区别越大,多重分形性质越明显;Δα越小则图像各测度区域和分形层次的区别越小,多重分形性质越微弱。
    fminfmax分布代表了图像测度集的最大值和最小值,其差值Δf表明图像在图像测度子集纹理复杂程度上的差异,Δf差值越大则表明图像不同测度子集纹理区别越明显。
    下载: 导出CSV

    表 2  分形纹理特征识别结果

    Table 2.  Recognition of fractal texture feature

    识别方法精确度/%召回率/%F1/%
    盒维数5078.9561.2
    毯维数88.278.983.3
    多重分形谱9510097.4
    下载: 导出CSV

    表 3  多重分形谱、GLCM、Tamura三种纹理特征识别结果

    Table 3.  Recognition results of multifractal spectrum, GLCM and Tamura

    识别方法精确率/%召回率/%F1/%
    多重分形谱9510097.4
    GLCM(d=10)10094.797.2
    Tamura六特征值94.184.288.9
    下载: 导出CSV
  • [1]

    赵建虎, 王爱学. 精密海洋测量与数据处理技术及其应用进展[J]. 海洋测绘, 2015, 35(6):1-7 doi: 10.3969/j.issn.1671-3044.2015.06.001

    ZHAO Jianhu, WANG Aixue. Precise marine surveying and data processing technology and their progress of application [J]. Hydrographic Surveying and Charting, 2015, 35(6): 1-7. doi: 10.3969/j.issn.1671-3044.2015.06.001

    [2]

    赵建虎, 王爱学, 王晓, 等. 侧扫声纳条带图像分段拼接方法研究[J]. 武汉大学学报: 信息科学版, 2013, 38(9):1034-1038

    ZHAO Jianhu, WANG Aixue, WANG Xiao, et al. A segmented mosaic method for side scan sonar strip images using corresponding features [J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1034-1038.

    [3]

    Rutledge J, Yuan W T, Wu J, et al. Intelligent shipwreck search using autonomous underwater vehicles[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane, QLD, Australia: IEEE, 2018: 6175-6182.

    [4]

    许文海, 续元君, 董丽丽, 等. 基于水平集和支持向量机的图像声呐目标识别[J]. 仪器仪表学报, 2012, 33(1):49-55 doi: 10.3969/j.issn.0254-3087.2012.01.008

    XU Wenhai, XU Yuanjun, DONG Lili, et al. Level-set and SVM based target recognition of image sonar [J]. Chinese Journal of Scientific Instrument, 2012, 33(1): 49-55. doi: 10.3969/j.issn.0254-3087.2012.01.008

    [5]

    卞红雨, 陈奕名, 张志刚, 等. 像素重要性测量特征下的侧扫声呐目标检测[J]. 声学学报, 2019, 44(3):353-359

    BIAN Hongyu, CHEN Yiming, ZHANG Zhigang, et al. Target detection algorithm in side-scan sonar image based on pixel importance measurement [J]. Acta Acustica, 2019, 44(3): 353-359.

    [6]

    郭军, 马金凤, 王爱学. 基于SVM算法和GLCM的侧扫声纳影像分类研究[J]. 测绘与空间地理信息, 2015, 38(3):60-63 doi: 10.3969/j.issn.1672-5867.2015.03.020

    GUO Jun, MA Jinfeng, WANG Aixue. Study of side scan sonar image classification based on SVM and gray level co-occurrence matrix [J]. Geomatics & Spatial Information Technology, 2015, 38(3): 60-63. doi: 10.3969/j.issn.1672-5867.2015.03.020

    [7]

    高程程, 惠晓威. 基于灰度共生矩阵的纹理特征提取[J]. 计算机系统应用, 2010, 19(6):195-198 doi: 10.3969/j.issn.1003-3254.2010.06.047

    GAO Chengcheng, HUI Xiaowei. GLCM-based texture feature extraction [J]. Computer Systems & Applications, 2010, 19(6): 195-198. doi: 10.3969/j.issn.1003-3254.2010.06.047

    [8]

    景军锋, 张缓缓, 李鹏飞, 等. LBP和Tamura纹理特征方法融合的织物疵点分类算法[J]. 计算机工程与应用, 2012, 48(23):155-160 doi: 10.3778/j.issn.1002-8331.2012.23.035

    JING Junfeng, ZHANG Huanhuan, LI Pengfei, et al. Fabric defect classification based on local binary patterns and Tamura texture feature method [J]. Computer Engineering and Applications, 2012, 48(23): 155-160. doi: 10.3778/j.issn.1002-8331.2012.23.035

    [9]

    王瑞. 多重分形及其在图像识别中的应用研究[D]. 西北大学硕士学位论文, 2010.

    WANG Rui. Multifractal and its application in image recognition[D]. Master Dissertation of Northwest University, 2010.

    [10]

    徐文海. 基于分形理论的遥感影像纹理分析与分类研究[D]. 中南大学硕士学位论文, 2010.

    XU Wenhai. Texture analysis and classification of remote sensing image based on fractal theory[D]. Master Dissertation of Central South University, 2010.

    [11]

    Femmam S. Texture classification approach based on 2D multifractal analysis[Z]. SPIE Newsroom, 2015.

    [12]

    Lopes R, Betrouni N. Fractal and multifractal analysis: a review [J]. Medical Image Analysis, 2009, 13(4): 634-649. doi: 10.1016/j.media.2009.05.003

    [13]

    Don S, Chung D, Revathy K, et al. A neural network approach to mammogram image classification using fractal features[C]//2009 IEEE International Conference on Intelligent Computing and Intelligent Systems. Shanghai, China: IEEE, 2009: 444-447.

    [14]

    Cao W L, Shi Z K, Feng J H. Traffic image classification method based on fractal dimension[C]//2006 5th IEEE International Conference on Cognitive Informatics. Beijing, China: IEEE, 2006: 903-907.

    [15]

    李攀峰, 赵铁虎, 张晓波, 等. 山东半岛遥感解译断裂分形研究[J]. 海洋地质与第四纪地质, 2015, 35(4):105-112

    LI Panfeng, ZHAO Tiehu, ZHANG Xiaobo, et al. Fractal research of remote sensing linear faults in Shandong peninsula [J]. Marine Geology & Quaternary Geology, 2015, 35(4): 105-112.

    [16]

    Grassberger P. Generalized dimensions of strange attractors [J]. Physics Letters A, 1983, 97(6): 227-230. doi: 10.1016/0375-9601(83)90753-3

    [17]

    Falconer K J. Fractal Geometry - Mathematical Foundations and Applications[M]. Chichester: Wiley, 1990.

    [18]

    Gagnepain J J, Roques-Carmes C. Fractal approach to two-dimensional and three-dimensional surface roughness [J]. Wear, 1986, 109(1-4): 119-126. doi: 10.1016/0043-1648(86)90257-7

    [19]

    Kisan S, Mishra S, Bhattacharjee G, et al. Analytical Study on Fractal Dimension-A Review[C]//2018 International Conference on Recent Innovations in Electrical, Electronics & Communication Engineering (ICRIEECE). IEEE, 2018: 380-384.

    [20]

    周江, 印萍, 程荡敌, 等. 基于GIS和分形理论研究的海岸线图像和分维以及长度[J]. 海洋地质与第四纪地质, 2008, 28(4):65-71

    ZHOU Jiang, YIN Ping, CHENG Dangdi, et al. Research on the fractal simulation image and the fractal dimension and length of coastline based on GIS and fractal theory [J]. Marine Geology & Quaternary Geology, 2008, 28(4): 65-71.

    [21]

    李会方. 多重分形理论及其在图象处理中应用的研究[D]. 西北工业大学博士学位论文, 2004.

    LI Huifang. The study on multifractal theory and application in image processing[D]. Doctor Dissertation of Northwestern Polytechnical University, 2004.

    [22]

    Turiel A, Del Pozo A. Reconstructing images from their most singular fractal manifold [J]. IEEE Transactions on Image Processing, 2002, 11(4): 345-350. doi: 10.1109/TIP.2002.999668

    [23]

    Turiel A, Parga N. The multifractal structure of contrast changes in natural images: from sharp edges to textures [J]. Neural Computation, 2000, 12(4): 763-793. doi: 10.1162/089976600300015583

    [24]

    Potlapalli H, Luo R C. Fractal-based classification of natural textures [J]. IEEE Transactions on Industrial Electronics, 1998, 45(1): 142-150. doi: 10.1109/41.661315

    [25]

    Mahmood Z, Ali T, Khattak S. Automatic player detection and recognition in images using AdaBoost[C]//Proceedings of 2012 9th International Bhurban Conference on Applied Sciences and Technology (IBCAST). Islamabad, Pakistan: IEEE, 2012: 64-69.

    [26]

    李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012: 18-20.

    LI Hang. Statistical Learning Methods[M]. Beijing: Tsinghua University Press, 2012: 18-20.

    [27]

    Scoville D. Steamer Homer Warren[Z/OL]. https://www.shipwreckworld.com/articles/side-scan-sonar-images/.

  • 加载中

(6)

(3)

计量
  • 文章访问数:  1187
  • PDF下载数:  16
  • 施引文献:  0
出版历程
收稿日期:  2020-07-03
修回日期:  2020-08-19
刊出日期:  2021-08-28

目录