冷泉羽状流多波束水体声学探测技术与应用

梅赛, 杨慧良, 孙治雷, 刘俊, 李海龙, 孙军, 赵钊. 冷泉羽状流多波束水体声学探测技术与应用[J]. 海洋地质与第四纪地质, 2021, 41(4): 222-231. doi: 10.16562/j.cnki.0256-1492.2020082401
引用本文: 梅赛, 杨慧良, 孙治雷, 刘俊, 李海龙, 孙军, 赵钊. 冷泉羽状流多波束水体声学探测技术与应用[J]. 海洋地质与第四纪地质, 2021, 41(4): 222-231. doi: 10.16562/j.cnki.0256-1492.2020082401
MEI Sai, YANG Huiliang, SUN Zhilei, LIU Jun, LI Hailong, SUN Jun, ZHAO Zhao. Acoustic detecting technology based on multibeam water column imaging and its application to cold seep plume[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 222-231. doi: 10.16562/j.cnki.0256-1492.2020082401
Citation: MEI Sai, YANG Huiliang, SUN Zhilei, LIU Jun, LI Hailong, SUN Jun, ZHAO Zhao. Acoustic detecting technology based on multibeam water column imaging and its application to cold seep plume[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 222-231. doi: 10.16562/j.cnki.0256-1492.2020082401

冷泉羽状流多波束水体声学探测技术与应用

  • 基金项目: 中国地质调查局项目(DD20190819,DD20191032);国家自然科学基金项目“基于多波束声学遥感探测海底甲烷羽状流基本特征研究”(41506119)
详细信息
    作者简介: 梅赛(1985—),男,助理研究员,在读博士,主要从事海洋地质调查与研究,E-mail:meisai2000@163.com
    通讯作者: 杨慧良(1977—),男,高级工程师,主要从事海洋探测技术及海洋地球物理研究,E-mail:qdyhuiliang@163.com
  • 中图分类号: P736

Acoustic detecting technology based on multibeam water column imaging and its application to cold seep plume

More Information
  • 海底冷泉作为地球水圈与下伏岩石圈之间物质和能量交换的重要场所,其广泛发育于主动大陆和被动大陆边缘、深海扩张中心、汇聚板块边界、弧前盆地、断层以及泥火山发育区等区域。研究海底冷泉对于海洋工程安全、天然气水合物开发、海洋油气勘探、全球气候变化、碳循环和极端生物群落等方面具有重要意义。本文在系统总结海底冷泉探测技术方法的基础上,重点阐述了多波束水体声学探测技术及海底冷泉羽状流特征反演方法,对海底冷泉系统探测技术方法完善和应用具有重要意义。

  • 加载中
  • 图 1  多道反射地震剖面上的泥火山及冷泉羽状流

    Figure 1. 

    图 2  斯匹次卑尔根海域浅地层剖面增强反射、声学空白带、羽状流等

    Figure 2. 

    图 3  墨西哥湾气泡羽状流

    Figure 3. 

    图 4  海底甲烷羽状流的声学图像

    Figure 4. 

    图 5  南海北部陆坡海底冷泉羽状流在多波束声呐图像上的形态特征

    Figure 5. 

    图 6  多波束水体探测过程中发现的数座海底泥火山同时喷发的冷泉羽状流

    Figure 6. 

    图 7  海底冷泉羽状流及ROV原位探测

    Figure 7. 

    图 8  多波束水体数据异常“弧圈”检测与消除

    Figure 8. 

    图 9  北海海域巨型海底冷泉羽状流上升过程示意图

    Figure 9. 

    表 1  冷泉基本特征与探测方法

    Table 1.  Basic characteristics and detecting method of cold seep

    位置特征描述探测手段探测方法
    沉积层泥火山 在正常沉积物表面由喷溢气体驱动形成的具有火山构造的泥质沉积多波束、浅剖、多道地震地球物理
    泥底辟、泥海岭由比泥火山小的气上升形成的正向隆起的海底沉积
    碳酸盐丘与石化冷泉有关的可高达300 m的沉积体
    气烟囱底部与顶部分别与底辟和麻坑相连,流体自深部向浅部渗漏和逸散
    沉积物烃类异常以甲烷为主的富烃类流体向海底运移过程会使还原沉积物中的硫酸盐浓度变低,钙、镁等离子也会出现异常[8]地质取样(拖网、箱式取样、拖网取样、多管取样、重力柱状取样、海底钻探);海底原位探测地球化学
    天然气水合物浅表层富含由水和甲烷气组成的结晶状似冰状化合物
    海底麻坑由于天然气、水等流体在海底表面逸散,带走部分沉积物颗粒而形成的海底凹坑多波束、浅剖、多道地震地球物理
    冷泉碳酸盐结壳海底的甲烷渗漏过程中, 向海底运移的富甲烷流体与上层海水扩散到沉积物中的硫酸盐发生甲烷厌氧氧化,生成甲烷成因自生碳酸盐岩地质取样(拖网、箱式取样、拖网取样、多管取样、重力柱状取样、海底钻探);海底原位探测地球化学
    生物礁与浅层气或冷泉存在有关的似珊瑚的岩群
    深水珊瑚礁石化冷泉口,经常与碳酸盐丘共存
    冷泉生物群落海底菌席等微生物、双壳类、多毛类、虾蟹类、冷水珊瑚等组成的生态系统
    水体天然气渗漏/冷泉羽状流肉眼可见从海底排溢出气体,这些气体通过泥火山、断层、裂隙等运移通道进入海水以气泡的形式上升运移,形成气泡羽流[9-10]多波束、浅剖、多道地震地球物理
    近底层海水甲烷高浓度异常由于沉积物下部甲烷渗漏活动造成的底层水甲烷高浓度异常[11]吹扫-捕集法;海底原位探测地球化学
    海面海面增温异常近海临震前卫星热红外增温异常,指示临震前导致的油气渗漏和(或)水合物因断裂减压或受热分解的烃类气体沿着构造裂隙不断逸出、上升至海面[12]热红外卫星遥感
    海面浮油海底渗漏的烃类物质以气泡或油滴的形式垂直迁移进入水体,部分气体到达水面进入大气,而油则在水面扩散成薄且非常细长的可凝聚的油膜合成孔径雷达
    下载: 导出CSV
  • [1]

    Paull C K, Hecker B, Commeau R, et al. Biological communities at the Florida escarpment resemble hydrothermal vent taxa [J]. Science, 1984, 226(4677): 965-967. doi: 10.1126/science.226.4677.965

    [2]

    Judd A, Hovland M. Seabed Fluid Flow: the Impact on Geology, Biology and the Marine Environment[M]. New York: Cambridge University Press, 2007.

    [3]

    Suess E. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions [J]. International Journal of Earth Sciences, 2014, 103(7): 1889-1916. doi: 10.1007/s00531-014-1010-0

    [4]

    Levin L A. Ecology of cold seep sediments: Interactions of fauna with flow, chemistry and microbes[M]//Gibson R N, Atkinson R J A, Gordon J D M. Oceanography and Marine Biology: an Annual Review. Boca Raton: CRC Press, 2005, 43: 1-46.

    [5]

    Levin L A, Baco A R, Bowden D A, et al. Hydrothermal vents and methane seeps: rethinking the sphere of influence [J]. Frontiers in Marine Science, 2016, 3: 72.

    [6]

    孙治雷, 何拥军, 李军, 等. 洋底热液喷口系统的微生物成矿研究进展[J]. 海洋地质与第四纪地质, 2011, 31(3):123-132

    SUN Zhilei, HE Yongjun, LI Jun, et al. The recent progress of submarine hydrothermal biomineralization [J]. Marine Geology & Quaternary Geology, 2011, 31(3): 123-132.

    [7]

    孙治雷, 魏合龙, 王利波, 等. 海底冷泉系统的碳循环问题及探测[J]. 应用海洋学学报, 2016, 35(3):442-450

    SUN Zhilei, WEI Helong, WANG Libo, et al. Focus issues of carbon cycle and detecting technologies in seafloor cold seepages [J]. Journal of Applied Oceanography, 2016, 35(3): 442-450.

    [8]

    李清, 蔡峰, 梁杰, 等. 东海冲绳海槽西部陆坡甲烷渗漏发育的孔隙水地球化学证据[J]. 中国科学: 地球科学, 2015, 58(6):986-995 doi: 10.1007/s11430-014-5034-x

    LI Qing, CAI Feng, LIANG Jie, et al. Geochemical constraints on the methane seep activity in western slope of the middle Okinawa Trough, the East China Sea [J]. Science China: Earth Sciences, 2015, 58(6): 986-995. doi: 10.1007/s11430-014-5034-x

    [9]

    胡杭民. 基于声学的海洋热液/冷泉探测技术研究[D]. 杭州电子科技大学硕士学位论文, 2015.

    HU Hangmin. Research on the technology of acoustic detection of marine hydrothermal vent and cold seep[D]. Master Dissertation of Hangzhou Dianzi University, 2015.

    [10]

    李灿苹, 刘学伟, 赵罗臣. 天然气水合物冷泉和气泡羽状流研究进展[J]. 地球物理学进展, 2013, 28(2):1048-1056

    LI Canping, LIU Xuewei, ZHAO Luochen. Progress on cold seeps and bubble plumes produced by gas hydrate [J]. Progress in Geophysics, 2013, 28(2): 1048-1056.

    [11]

    尹希杰, 周怀阳, 杨群慧, 等. 南海北部甲烷渗漏活动存在的证据: 近底层海水甲烷高浓度异常[J]. 海洋学报, 2008, 30(6):69-75

    YIN Xijie, ZHOU Huaiyang, YANG Qunhui, et al. The evidence for the existence of methane seepages in the northern South China Sea: Abnormal high methane concentration in bottom waters [J]. Acta Oceanologica Sinica, 2008, 30(6): 69-75.

    [12]

    卢振权, 吴必豪, 强祖基, 等. 中国近海海域卫星热红外亮温增温异常探讨[J]. 现代地质, 2005, 19(1):74-82

    LU Zhenquan, WU Bihao, QIANG Zuji, et al. Brightness temperature anomalies in satellite-based thermal infrared remote sensing along the offshore China seas [J]. Geoscience, 2005, 19(1): 74-82.

    [13]

    徐翠玲. 南海冷泉区甲烷渗漏过程的原位观测研究[D]. 中国海洋大学硕士学位论文, 2013.

    XU Cuiling. In situ observation of methane seepage in the South China Sea[D]. Master Dissertation of Ocean University of China, 2013.

    [14]

    胡刚, 赵铁虎, 章雪挺, 等. 天然气水合物赋存区近海底环境原位观测系统集成与实现[J]. 海洋地质前沿, 2015, 31(6):30-35

    HU Gang, ZHAO Tiehu, ZHANG Xueting, et al. Integration and implementation of seabed environment in-situ monitoring systems in natural gas hydrate area [J]. Marine Geology Frontiers, 2015, 31(6): 30-35.

    [15]

    邸鹏飞, 冯东, 高立宝, 等. 海底冷泉流体渗漏的原位观测技术及冷泉活动特征[J]. 地球物理学进展, 2008, 23(5):1592-1602

    DI Pengfei, FENG Dong, GAO Libao, et al. In situ measurement of fluid flow and signatures of seep activity at marine seep sites [J]. Progress in Geophysics, 2008, 23(5): 1592-1602.

    [16]

    黄霞. 海底原位地球化学传感器的研制与应用[D]. 浙江大学博士学位论文, 2008.

    HUANG Xia. Preparation and application of in-situ geochemical sensors on seafloor[D]. Doctor Dissertation of Zhejiang University, 2008.

    [17]

    赵广涛, 徐翠玲, 张晓东, 等. 海底沉积物-水界面溶解甲烷渗漏通量原位观测研究进展[J]. 中国海洋大学学报: 自然科学版, 2014, 44(12):73-81

    ZHAO Guangtao, XU Cuiling, ZHANG Xiaodong, et al. Research progress in in-situ observations of dissolved methane seepage fluxed across the water-sediment interface [J]. Periodical of Ocean University of China, 2014, 44(12): 73-81.

    [18]

    陈忠, 杨华平, 黄奇瑜, 等. 海底甲烷冷泉特征与冷泉生态系统的群落结构[J]. 热带海洋学报, 2007, 26(6):73-82

    CHEN Zhong, YANG Huaping, HUANG Qiyu, et al. Characteristics of cold seeps and structures of chemoauto-synthesis-based communities in seep sediments [J]. Journal of Tropical Oceanography, 2007, 26(6): 73-82.

    [19]

    Sun Z L, Wei H L, Zhang X H, et al. A unique Fe-rich carbonate chimney associated with cold seeps in the Northern Okinawa Trough, East China Sea [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2015, 95: 37-53. doi: 10.1016/j.dsr.2014.10.005

    [20]

    王志雄, 高平, 莫杰. 海底地质勘查现代技术方法的应用现状及发展趋势[J]. 海洋地质与第四纪地质, 2002, 22(2):109-114

    WANG Zhixiong, GAO Ping, MO Jie. Application of modern technical methods to sea-floor geologic exploration and their development tendency [J]. Marine Geology & Quaternary Geology, 2002, 22(2): 109-114.

    [21]

    耿雪樵, 徐行, 刘方兰, 等. 我国海底取样设备的现状与发展趋势[J]. 地质装备, 2009, 10(4):11-16

    GENG Xueqiao, XU Xing, LIU Fanglan, et al. The current status and development trends of marine sampling equipment [J]. Equipment for Geotechnical Engineering, 2009, 10(4): 11-16.

    [22]

    曾宪军, 伍忠良, 郝小柱. 海洋地质调查方法与设备综述[J]. 气象水文海洋仪器, 2009, 26(1):111-117, 120

    ZENG Xianjun, WU Zhongliang, HAO Xiaozhu. Summary of marine geological survey methods and equipments [J]. Meteorological, Hydrological and Marine Instruments, 2009, 26(1): 111-117, 120.

    [23]

    蓝先洪, 温珍河, 李日辉, 等. 海底地质取样的技术标准[J]. 海洋地质前沿, 2014, 30(2):50-55

    LAN Xianhong, WEN Zhenhe, LI Rihui, et al. Study on technological standard for submarine geological sampling [J]. Marine Geology Frontiers, 2014, 30(2): 50-55.

    [24]

    补家武, 鄢泰宁, 昌志军. 海底取样技术发展现状及工作原理概述: 海底取样技术专题之一[J]. 探矿工程(岩土钻掘工程), 2001(2):44-48

    BU Jiawu, YAN Taining, CHANG Zhijun. Introduction to the status Quo and operating principle of seabed samplers: part 1 of the subject on seabed sampling [J]. Exploration Engineering (Drilling & Tunneling), 2001(2): 44-48.

    [25]

    张汉泉, 陈奇, 万步炎, 等. 海底钻机的国内外研究现状与发展趋势[J]. 湖南科技大学学报: 自然科学版, 2016, 31(1):1-7

    ZHANG Hanquan, CHEN Qi, WAN Buyan, et al. Current research and development trends of seabed drill rig [J]. Journal of Hunan University of Science & Technology: Natural Science Edition, 2016, 31(1): 1-7.

    [26]

    陈江欣, 宋海斌, 关永贤, 等. 海底冷泉的地震海洋学初探[J]. 地球物理学报, 2017, 60(2):604-616

    CHEN Jiangxin, SONG Haibin, GUAN Yongxian, et al. A preliminary study of submarine cold seeps applying Seismic Oceanography techniques [J]. Chinese Journal of Geophysics, 2017, 60(2): 604-616.

    [27]

    徐华宁, 邢涛, 王家生, 等. 利用多道地震反射数据探测神狐海域渗漏型水合物[J]. 地球科学: 中国地质大学学报, 2012, 37(S1):195-202

    XU Huaning, XING Tao, WANG Jiasheng, et al. Detecting seepage hydrate reservoir using multi-channel seismic reflecting data in Shenhu area [J]. Earth Science: Journal of China University of Geosciences, 2012, 37(S1): 195-202.

    [28]

    郑红波, 阎贫, 刘海龄, 等. 浅剖资料在南海北部东沙西南海域水合物调查中的应用[J]. 海洋地质与第四纪地质, 2012, 32(2):115-120

    ZHENG Hongbo, YAN Pin, LIU Hailing, et al. The application of sub-bottom profile to gas hydrate investigation in southwest Dongsha sea area, northern South China Sea [J]. Marine Geology & Quaternary Geology, 2012, 32(2): 115-120.

    [29]

    刘伯然, 宋海斌, 关永贤, 等. 南海东北部陆坡冷泉系统的浅地层剖面特征与分析[J]. 地球物理学报, 2015, 58(1):247-256

    LIU Boran, SONG Haibin, GUAN Yongxian, et al. Characteristics and formation mechanism of cold seep system in the northeastern continental slope of South China Sea from sub-bottom profiler data [J]. Chinese Journal of Geophysics, 2015, 58(1): 247-256.

    [30]

    Roy S, Senger K, Hovland M, et al. Geological controls on shallow gas distribution and seafloor seepage in an Arctic fjord of Spitsbergen, Norway [J]. Marine and Petroleum Geology, 2019, 107: 237-254. doi: 10.1016/j.marpetgeo.2019.05.021

    [31]

    Dupré S, Berger L, Le Bouffant N, et al. Fluid emissions at the Aquitaine Shelf (Bay of Biscay, France): A biogenic origin or the expression of hydrocarbon leakage? [J]. Continental Shelf Research, 2014, 88: 24-33. doi: 10.1016/j.csr.2014.07.004

    [32]

    Naudts L, Greinert J, Poort J, et al. Active venting sites on the gas-hydrate-bearing Hikurangi Margin, off New Zealand: Diffusive-versus bubble-released methane [J]. Marine Geology, 2010, 272(1-4): 233-250. doi: 10.1016/j.margeo.2009.08.002

    [33]

    von Deimling J S, Greinert J, Chapman N R, et al. Acoustic imaging of natural gas seepage in the North Sea: Sensing bubbles controlled by variable currents [J]. Limnology and Oceanography, 2010, 8(5): 155-171.

    [34]

    梅赛, 赵铁虎, 杨源, 等. 甲烷羽状流水体声学探测及气体运移通量测算[J]. 海洋地质前沿, 2013, 29(3):53-59

    MEI Sai, ZHAO Tiehu, YANG Yuan, et al. The water column acoustical detection of methane plume and gas migration flux calculation [J]. Marine Geology Frontiers, 2013, 29(3): 53-59.

    [35]

    Sassen R, Milkov A V, Roberts H H, et al. Geochemical evidence of rapid hydrocarbon venting from a seafloor-piercing mud diapir, Gulf of Mexico continental shelf [J]. Marine Geology, 2003, 198(3-4): 319-329. doi: 10.1016/S0025-3227(03)00121-X

    [36]

    Greinert J, Artemov Y, Egorov V, et al. 1300-m-high rising bubbles from mud volcanoes at 2080 m in the Black Sea: Hydroacoustic characteristics and temporal variability [J]. Earth and Planetary Science Letters, 2006, 244(1-2): 1-15. doi: 10.1016/j.jpgl.2006.02.011

    [37]

    刘斌, 刘胜旋. 南海北部陆坡气泡羽状流的发现: 多波束水体数据[J]. 海洋学报, 2017, 39(9):83-89

    LIU Bin, LIU Shengxuan. Gas bubble plumes observed at north slope of South China Sea from multi-beam water column data [J]. Acta Oceanologica Sinica, 2017, 39(9): 83-89.

    [38]

    Marques C. Automatic mid-water target detection using multibeam water column[D]. Master Dissertation of University of New Brunswick, 2012.

    [39]

    Teng Y. Sector-specific beam pattern compensation for multi-sector and multi-swath multibeam sonars[D]. Master Dissertation of University of New Brunswick, 2012.

    [40]

    Van der Werf A. Mast tracking capability of EM3002d using water column imaging[D]. Doctor Dissertation of University of New Brunswick, 2010.

    [41]

    阳凡林, 韩李涛, 王瑞富, 等. 多波束声纳水柱影像探测中底层水域目标的研究进展[J]. 山东科技大学学报: 自然科学版, 2013, 32(6):75-83

    YANG Fanlin, HAN Litao, WANG Ruifu, et al. Progress in object detection in middle and bottom-water based on multibeam water column image [J]. Journal of Shandong University of Science and Technology: Natural Science, 2013, 32(6): 75-83.

    [42]

    郑双强, 刘洪霞, 阳凡林, 等. 多波束声纳水柱影像分析工具的设计与实现[J]. 海洋测绘, 2016, 36(6):46-49

    ZHENG Shuangqiang, LIU Hongxia, YANG Fanlin, et al. Design and implementation of multibeam sonar water column image analysis toolkit [J]. Hydrographic Surveying and Charting, 2016, 36(6): 46-49.

    [43]

    Veloso M, Greinert J, Mienert J, et al. A new methodology for quantifying bubble flow rates in deep water using splitbeam echosounders: Examples from the Arctic offshore NW-Svalbard [J]. Limnology and Oceanography: Methods, 2015, 13(6): 267-287. doi: 10.1002/lom3.10024

    [44]

    Urban P, Köser K, Greinert J. Processing of multibeam water column image data for automated bubble/seep detection and repeated mapping [J]. Limnology and Oceanography: Methods, 2017, 15(1): 1-21. doi: 10.1002/lom3.10138

    [45]

    Römer M, Wenau S, Mau S, et al. Assessing marine gas emission activity and contribution to the atmospheric methane inventory: A multidisciplinary approach from the Dutch Dogger Bank seep area (North Sea) [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(7): 2617-2633. doi: 10.1002/2017GC006995

    [46]

    余翼, 栾锡武, 刘鸿, 等. 海底冷泉气泡羽流声学探测参数研究[J]. 海洋地质与第四纪地质, 2019, 39(2):188-199

    YU Yi, LUAN Xiwu, LIU Hong, et al. Research on acoustic detection parameters for bubble plume in cold seeps [J]. Marine Geology & Quaternary Geology, 2019, 39(2): 188-199.

    [47]

    Llewellyn K C. Corrections for beam pattern residuals in backscatter imagery from the Kongsberg-simrad EM300 multibeam echosounder[D]. Master Dissertation of University of New Brunswick, 2006.

    [48]

    汪诗奇, 张红梅, 赵建虎. 多波束水体影像中噪声干扰的削弱方法研究[J]. 武汉大学学报: 信息科学版, 2019, 44(4):539-545

    WANG Shiqi, ZHANG Hongmei, ZHAO Jianhu. Reduction of noise interference in multibeam water column image [J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 539-545.

    [49]

    权永峥, 冯秀丽, 丁咚, 等. 多波束水体数据中旁瓣干扰处理方法研究[J]. 中国海洋大学学报: 自然科学版, 2019, 49(7):64-70

    QUAN Yongzheng, FENG Xiuli, DING Dong, et al. A study on process sidelobe in multibeams water column data [J]. Periodical of Ocean University of China, 2019, 49(7): 64-70.

    [50]

    Philip B T, Denny A R, Solomon E A, et al. Time-series measurements of bubble plume variability and water column methane distribution above Southern Hydrate Ridge, Oregon [J]. Geochemistry, Geophysics, Geosystems, 2016, 17(3): 1182-1196. doi: 10.1002/2016GC006250

    [51]

    龙睿捷, 王胜平. 多波束水柱影像中三维羽流数据提取方法研究[J]. 江西科学, 2019, 37(4):615-620, 631

    LONG Ruijie, WANG Shengping. Research on extraction method of 3D plume data in multi-beam water column image [J]. Jiangxi Science, 2019, 37(4): 615-620, 631.

    [52]

    李东辉, 郑双强, 陈建兵, 等. 多波束声呐水体影像沉船自动提取方法[J]. 海洋科学, 2019, 43(3):11-18

    LI Donghui, ZHENG Shuangqiang, CHEN Jianbing, et al. Automatic extraction of wreck based on multibeam water column image [J]. Marine Sciences, 2019, 43(3): 11-18.

    [53]

    Artemov Y G, Egorov V N, Polikarpov G G, et al. Methane emission to the hydro- and atmosphere by gas bubble streams in the Dnieper paleo-delta, the Black Sea [J]. Rep Natl Acad Sci Ukr, 2007, 5: 110-116.

    [54]

    Wilson D S, Leifer I, Maillard E. Megaplume bubble process visualization by 3D multibeam sonar mapping [J]. Marine and Petroleum Geology, 2015, 68: 753-765. doi: 10.1016/j.marpetgeo.2015.07.007

    [55]

    华志励, 刘波. 基于单波束测深资料的海底冷泉动力学特征反演方法研究[J]. 海洋科学, 2019, 43(9):94-103

    HUA Zhili, LIU Bo. Retrieval process of cold seep dynamic parameters based on single-beam echo sounder profiles [J]. Marine Sciences, 2019, 43(9): 94-103.

  • 加载中

(9)

(1)

计量
  • 文章访问数:  3911
  • PDF下载数:  112
  • 施引文献:  0
出版历程
收稿日期:  2020-08-24
修回日期:  2020-10-13
刊出日期:  2021-08-28

目录