利用微区XRF技术的大洋固体矿产成分快速无损检测

林梵宇, 尹希杰, 黄威, 黄杰超, 梁毓娜. 利用微区XRF技术的大洋固体矿产成分快速无损检测[J]. 海洋地质与第四纪地质, 2021, 41(1): 223-232. doi: 10.16562/j.cnki.0256-1492.2020071701
引用本文: 林梵宇, 尹希杰, 黄威, 黄杰超, 梁毓娜. 利用微区XRF技术的大洋固体矿产成分快速无损检测[J]. 海洋地质与第四纪地质, 2021, 41(1): 223-232. doi: 10.16562/j.cnki.0256-1492.2020071701
LIN Fanyu, YIN Xijie, HUANG Wei, HUANG Jiechao, LIANG Yuna. Application of micro-XRF technology to rapid and nondestructive detection of inorganic elements in ocean minerals[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 223-232. doi: 10.16562/j.cnki.0256-1492.2020071701
Citation: LIN Fanyu, YIN Xijie, HUANG Wei, HUANG Jiechao, LIANG Yuna. Application of micro-XRF technology to rapid and nondestructive detection of inorganic elements in ocean minerals[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 223-232. doi: 10.16562/j.cnki.0256-1492.2020071701

利用微区XRF技术的大洋固体矿产成分快速无损检测

  • 基金项目: 中国地质调查局地质调查项目(DD20191010,DD20190578);青岛海洋科学与技术国家实验室海洋矿产资源评价与探测技术功能实验室开放基金(MMRZZ201809)
详细信息
    作者简介: 林梵宇(1984―),男,工程师,博士,从事元素检测方向研究,E-mail:linfanyu@tio.org.cn
    通讯作者: 尹希杰(1977―),男,博士,副研究员,从事稳定同位素方向研究,E-mail:yinxijie@tio.org.cn
  • 中图分类号: P744

Application of micro-XRF technology to rapid and nondestructive detection of inorganic elements in ocean minerals

More Information
  • 深海固体矿产主要由铁锰结核、富钴结壳和多金属热液硫化物组成,元素在矿产中原位的分布和含量,对了解矿物成因、品位以及评估其经济价值有重要指示作用。本研究利用微区XRF分析技术对铁锰结核、富钴结壳、热液硫化物3种大洋类型矿产样品,进行高分辨、原位和无损的多元素空间分布检测,结果显示了不同元素在3种类型矿物中的空间分布特征。通过对测试数据进一步处理和优化成图流程,可以获得特定元素在矿物中半定量分布图,并对不同元素在矿物空间分布的差异性和相关性进行对比分析,从而建立一种肉眼可见的测试大洋矿产资源样品中元素原位分布的新方法。

  • 加载中
  • 图 1  结核样品多元素分布图

    Figure 1. 

    图 2  结核样品铁锰元素相关性及分布情况

    Figure 2. 

    图 3  结壳样品中多元素含量分布图

    Figure 3. 

    图 4  结壳样品中铁锰元素含量比值

    Figure 4. 

    图 5  结壳样品钴元素分布图

    Figure 5. 

    图 6  热液硫化物样品多元素分布图

    Figure 6. 

    表 1  微区XRF在结核、结壳样品中的平行性验证

    Table 1.  Verification of parallelism of micro-XRF in nodule and crust samples

    元素结核样品结壳样品点1 结壳样品点2
    5次点扫
    均值/%
    5次点扫标准
    偏差/%
    相对标准
    偏差/%
    5次点扫
    均值/%
    5次点扫标准
    偏差/%
    相对标准
    偏差/%
    5次点扫
    均值/%
    5次点扫标准
    偏差/%
    相对标准
    偏差/%
    Mg0.0980.03535.30.1130.02320.00.0630.04674.1
    Al0.5970.0203.30.3200.0185.51.8200.1075.9
    Si1.8730.0130.71.9610.0502.67.8340.3033.9
    P0.2520.0041.80.3820.0092.30.2860.03612.7
    S0.2220.0062.70.2590.0020.80.1700.01710.0
    Cl2.2960.0190.81.3480.0282.11.5690.0120.8
    K0.7880.0040.50.6820.0050.81.3540.0392.9
    Ca4.0110.0120.35.1470.0170.35.8570.0260.4
    Ti2.3910.0060.32.6680.0080.31.7770.0090.5
    V0.2580.0062.50.3290.0092.80.2810.0227.7
    Cr0.2860.0082.90.2450.0093.70.4990.0102.1
    Mn50.8800.0370.144.0810.0490.134.9710.4611.3
    Fe32.7460.0690.239.6510.0790.241.2890.1540.4
    Co1.2690.0070.51.0660.0121.10.5060.0316.2
    Ni0.7610.0040.50.5340.0030.60.5940.0081.4
    Cu0.3030.0041.50.1700.0042.20.2520.0051.8
    Zn0.1570.0085.00.1500.0106.40.1420.0075.2
    Sr0.0810.0022.40.1040.0022.30.1070.0032.8
    Pb0.7300.0142.00.7880.0141.70.6290.0121.9
    下载: 导出CSV

    表 2  微区XRF在热液硫化物样品中的平行性验证

    Table 2.  Verification of parallelism of micro-XRF in hydrothermal sulfide

    元素热液硫化物点1 热液硫化物点2 热液硫化物点3
    5次点扫
    均值/%
    5次点扫标准
    偏差/%
    相对标准
    偏差/%
    5次点扫
    均值/%
    5次点扫标准
    偏差/%
    相对标准
    偏差/%
    5次点扫
    均值/%
    5次点扫标准
    偏差/%
    相对标准
    偏差/%
    Al0.4840.06513.50.1780.02212.30.1800.02212.4
    Si1.0760.24222.50.1020.01312.71.0450.0212.0
    S26.5940.9173.442.9300.4241.034.6850.0840.2
    Cl1.9540.27914.30.6710.41962.43.4460.0210.6
    K0.1610.0084.80.0660.0057.00.3240.0154.8
    Ca0.0670.03449.80.0080.0017.20.0340.0037.6
    V0.0980.01313.30.2040.03818.82.4220.0311.3
    Cr1.1020.20018.254.4630.6811.219.1710.0590.3
    Fe39.3250.4721.20.0170.0018.10.0230.0027.1
    Cu27.6290.6332.30.2230.0052.46.5210.1332.0
    Zn1.5110.23515.51.1380.1069.332.1460.2400.7
    下载: 导出CSV

    表 3  微区XRF在黄铁矿标样中的准确度验证

    Table 3.  Accuracy verification of micro-XRF in pyrite standard sample

    黄铁矿标样K18点1/%点2/%点3/%3次点扫相对标准偏差/%3次点扫均值/%标样理论值/%检测误差/%
    Fe43.0143.5143.360.5943.2946.647.18
    S53.3853.3252.930.4653.2153.190.04
    下载: 导出CSV

    表 4  微区XRF在闪锌矿标样中的准确度验证

    Table 4.  Accuracy verification of micro-XRF in sphalerite standard sample

    闪锌矿标样 K52点1/%点2/%点3/%3次点扫相对标准偏差/%3次点扫均值/%标样理论值/%检测误差/%
    Zn62.9662.3363.621.0262.9766.965.96
    S33.6833.7233.410.5033.6032.712.72
    下载: 导出CSV

    表 5  不同单点驻留时间下的微区XRF面扫结果比对

    Table 5.  Comparison of micro-XRF area scanning results under different point dwell time

    元素100ms/%50 ms/%30 ms/%20 ms/%10 ms/%
    Al0.110.130.100.120.12
    Si0.520.530.520.520.51
    S43.3543.2443.3443.2343.33
    Cl4.003.913.903.943.95
    K0.020.020.020.020.03
    Ca0.100.110.110.110.11
    Cr1.671.671.701.671.67
    Fe45.9046.0646.0246.0745.99
    Cu1.391.401.381.401.38
    Zn2.862.872.842.862.86
    As0.050.050.050.050.05
    Cd0.020.020.020.020.02
    下载: 导出CSV
  • [1]

    高亚峰. 海洋矿产资源及其分布[J]. 海洋信息, 2009(1):13-14 doi: 10.3969/j.issn.1005-1724.2009.01.005

    GAO Yafeng. Marine mineral resources and their distribution [J]. Marine Information, 2009(1): 13-14. doi: 10.3969/j.issn.1005-1724.2009.01.005

    [2]

    崔木花, 董普, 左海凤. 我国海洋矿产资源的现状浅析[J]. 海洋开发与管理, 2005, 22(5):16-21 doi: 10.3969/j.issn.1005-9857.2005.05.002

    CUI Muhua, DONG Pu, ZUO Haifeng. Brief analysis on the current situation of the marine mineral resources of China [J]. Ocean Development and Management, 2005, 22(5): 16-21. doi: 10.3969/j.issn.1005-9857.2005.05.002

    [3]

    Hein J R, Mizell K, Koschinsky A, et al. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources [J]. Ore Geology Reviews, 2013, 51: 1-14. doi: 10.1016/j.oregeorev.2012.12.001

    [4]

    Kuhn T, Wegorzewski A, Rühlemann C, et al. Composition, formation, and occurrence of polymetallic nodules[M]//Sharma R. Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations. Cham: Springer International Publishing, 2017: 23-63.

    [5]

    Hein J R, Koschinsky A. Deep-ocean ferromanganese crusts and nodules[M]//Turekian K K. Treatise on Geochemistry. 2nd ed. Oxford: Elsevier, 2014: 273-291.

    [6]

    朱节清, 王毅民. 锰结核微区元素分布及生长速率变化研究[J]. B辑, 1993, 23(4):417-422

    ZHU Jieqing, WANG Yimin. Study on element distribution and growth rate of manganese nodules [J]. Chinese Science: Chemistry, Life science and Geoscience, 1993, 23(4): 417-422.

    [7]

    赵宏樵, 郑存江, 初凤友, 等. 富钴结壳中成矿元素的微区分布特征及其地质意义[J]. 海洋学研究, 2009, 27(2):84-89 doi: 10.3969/j.issn.1001-909X.2009.02.012

    ZHAO Hongqiao, ZHENG Cunjiang, CHU Fengyou, et al. Mirco-area distribution characteristics of the elements in co-rich crust and its geological significance [J]. Journal of Marine Sciences, 2009, 27(2): 84-89. doi: 10.3969/j.issn.1001-909X.2009.02.012

    [8]

    龙晓军, 赵广涛, 杨胜雄, 等. 西太平洋麦哲伦海山富钴结壳成分特征及古环境记录[J]. 海洋地质与第四纪地质, 2015, 35(5):47-55

    LONG Xiaojun, ZHAO Guangtao, YANG Shengxiong, et al. Chemical composition and paleoenvironmental record of the co-rich crust from Magellan seamount in Western Pacific [J]. Marine Geology and Quaternary Geology, 2015, 35(5): 47-55.

    [9]

    German C R, Seyfried W E Jr. Hydrothermal processes[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Oxford: Elsevier, 2014: 191-233.

    [10]

    李目. 我国科学家首次在大洋中脊发现新的海底热液活动区[J]. 北京大学学报: 自然科学版, 2007, 43(3):389

    LI Mu. The first discovery of a new hydrothermal active area in the mid ocean ridge by Chinese scientists [J]. Journal of Peking University: Natural Science, 2007, 43(3): 389.

    [11]

    Böning P, Bard E, Rose J. Toward direct, micron-scale XRF elemental maps and quantitative profiles of wet marine sediments [J]. Geochemistry, Geophysics, Geosystems, 2007, 8(5): Q05004.

    [12]

    Sorrel P, Oberhänsli H, Boroffka N, et al. Control of wind strength and frequency in the Aral Sea basin during the late Holocene [J]. Quaternary Research, 2007, 67(3): 371-382. doi: 10.1016/j.yqres.2006.12.003

    [13]

    梁述廷, 刘玉纯, 刘瑱, 等. X射线荧光光谱微区分析在铅锌矿石鉴定上的应用[J]. 岩矿测试, 2013, 32(6):897-902 doi: 10.3969/j.issn.0254-5357.2013.06.009

    LIANG Shuting, LIU Yuchun, LIU Zhen, et al. Application of in-situ micro-X-ray fluorescence spectrometry in the identification of lead-zinc ore [J]. Rock and Mineral Analysis, 2013, 32(6): 897-902. doi: 10.3969/j.issn.0254-5357.2013.06.009

    [14]

    杨海, 葛良全, 谷懿, 等. 原位微区X射线荧光分析在矿物学研究中的应用[J]. 光谱学与光谱分析, 2013(11):3137-3141 doi: 10.3964/j.issn.1000-0593(2013)11-3137-05

    YANG Hai, GE Liangquan, GU Yi, et al. Application of in situ micro energy dispersive X-ray fluorescence analysis in mineralogy [J]. Spectroscopy and Spectral Analysis, 2013(11): 3137-3141. doi: 10.3964/j.issn.1000-0593(2013)11-3137-05

    [15]

    刘勇胜, 胡兆初, 李明, 等. LA-ICP-MS在地质样品元素分析中的应用[J]. 科学通报, 2013, 58(32):3863-3878 doi: 10.1007/s11434-013-5901-4

    LIU Yongsheng, HU Zhaochu, LI Ming, et al. Applications of LA-ICP-MS in the elemental analyses of geological samples [J]. Chinese Science Bulletin, 2013, 58(32): 3863-3878. doi: 10.1007/s11434-013-5901-4

    [16]

    宋佳泽, 黄湘通, 杨守业, 等. 南黄海牡蛎壳元素组成的原位微区分析及环境指示[J]. 海洋地质与第四纪地质, 2020, 40(2):70-79

    SONG Jiaze, HUANG Xiangtong, YANG Shouye, et al. In-situ microanalysis of elemental ratios in a single oyster shell from the South Yellow Sea, China and its environmental implications [J]. Marine Geology and Quaternary Geology, 2020, 40(2): 70-79.

    [17]

    吴石头, 王亚平, 许春雪. 激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展[J]. 岩矿测试, 2015, 34(5):503-511

    WU Shitou, WANG Yaping, XU Chunxue. Research progress on reference materials for in situ elemental analysis by laser ablation-inductively coupled plasma-mass spectrometry [J]. Rock and Mineral Analysis, 2015, 34(5): 503-511.

    [18]

    沈亚婷. 原位微区同步辐射X射线荧光和近边吸收谱研究拟南芥幼苗及根际土壤中铅分布与形态特征[J]. 光谱学与光谱分析, 2014, 34(3):818-822 doi: 10.3964/j.issn.1000-0593(2014)03-0818-05

    SHEN Yating. Distribution and speciation of Pb in Arabidopsis thaliana shoot and rhizosphere soil by in situ synchrotron radiation micro X-ray fluorescence and X-ray absorption near edge structure [J]. Spectroscopy and Spectral Analysis, 2014, 34(3): 818-822. doi: 10.3964/j.issn.1000-0593(2014)03-0818-05

    [19]

    袁静, 罗立强. 同步辐射微区X射线荧光和吸收谱技术在大气、土壤和动植物分析中的应用[J]. 核技术, 2014, 37(8):1-11

    YUAN Jing, LUO Liqiang. Synchrotron μ-XRF and XAFS in element distribution and speciation of air, soil and biological samples [J]. Nuclear Techniques, 2014, 37(8): 1-11.

    [20]

    凡小盼, 赵雄伟, 高强. 同步辐射微束X射线荧光技术在早期黄铜研究中的应用[J]. 电子显微学报, 2014, 33(4):349-356 doi: 10.3969/j.issn.1000-6281.2014.04.012

    FAN Xiaopan, ZHAO Xiongwei, GAO Qiang. The application of synchrotron radiation μ-X-ray fluorescence technology to early brass research [J]. Journal of Chinese Electron Microscopy Society, 2014, 33(4): 349-356. doi: 10.3969/j.issn.1000-6281.2014.04.012

    [21]

    van der Ent A, Przybyłowicz W J, de Jonge M D, et al. X-ray elemental mapping techniques for elucidating the ecophysiology of hyperaccumulator plants [J]. New Phytologist, 2018, 218(2): 432-452. doi: 10.1111/nph.14810

  • 加载中

(6)

(5)

计量
  • 文章访问数:  1311
  • PDF下载数:  45
  • 施引文献:  0
出版历程
收稿日期:  2020-07-17
修回日期:  2020-09-29
刊出日期:  2021-02-28

目录