伊豆−博宁−马里亚纳岛弧地壳厚度分布及其对岩浆活动的指示

白永良, 杨慧良, 张迪娅, 容伊霖, 董冬冬, 吴时国. 伊豆−博宁−马里亚纳岛弧地壳厚度分布及其对岩浆活动的指示[J]. 海洋地质与第四纪地质, 2021, 41(1): 158-165. doi: 10.16562/j.cnki.0256-1492.2020073001
引用本文: 白永良, 杨慧良, 张迪娅, 容伊霖, 董冬冬, 吴时国. 伊豆−博宁−马里亚纳岛弧地壳厚度分布及其对岩浆活动的指示[J]. 海洋地质与第四纪地质, 2021, 41(1): 158-165. doi: 10.16562/j.cnki.0256-1492.2020073001
BAI Yongliang, YANG Huiliang, ZHANG Diya, RONG Yilin, DONG Dongdong, WU Shiguo. Crustal thickness variations of the Izu-Bonin-Mariana Arc and their implications for arc magmatism[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 158-165. doi: 10.16562/j.cnki.0256-1492.2020073001
Citation: BAI Yongliang, YANG Huiliang, ZHANG Diya, RONG Yilin, DONG Dongdong, WU Shiguo. Crustal thickness variations of the Izu-Bonin-Mariana Arc and their implications for arc magmatism[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 158-165. doi: 10.16562/j.cnki.0256-1492.2020073001

伊豆−博宁−马里亚纳岛弧地壳厚度分布及其对岩浆活动的指示

  • 基金项目: 山东省自然科学基金项目“伊豆−博宁−马里亚纳俯冲带岛弧增生速率及其控制因素研究”(ZR2020MD065);国家自然科学基金项目“西太平洋典型俯冲带的流体活动及其对孕震机理的影响”(91958211)
详细信息
    作者简介: 白永良(1986―),男,博士,讲师,从事地球动力学与地学大数据研究工作,E-mail:ylbai@upc.edu.cn
    通讯作者: 杨慧良(1977―),男,硕士,高级工程师,主要从事海洋地球物理调查与研究工作,E-mail:dqyhuiliang@163.com
  • 中图分类号: P738.1

Crustal thickness variations of the Izu-Bonin-Mariana Arc and their implications for arc magmatism

More Information
  • 数值模拟研究认为洋底高原/洋脊俯冲和弧后扩张能够有效影响俯冲带岩浆活动和岛弧地壳增生。本文以伊豆−博宁−马里亚纳(IBM)俯冲带为实例,论证该结论的有效性。以卫星测高反演重力异常为基础,通过构建地球不同圈层密度模型,反演得到IBM俯冲带莫霍面埋深。本文的莫霍面埋深反演结果与地震解释结果具有一致的分布趋势。结合开源水深和沉积层厚度数据,给出了IBM俯冲带地壳厚度分布。IBM岛弧地壳体积沿走向的分布特征表明:①小笠原洋底高原和相对较小规模达顿洋脊的俯冲,都能够使得相应位置的岛弧变窄、地壳变厚、体积增大;②马里亚纳海槽扩张显著降低了岛弧地壳体积的增生量。

  • 加载中
  • 图 1  俯冲带岩浆活动过程示意图

    Figure 1. 

    图 2  伊豆−博宁−马里亚纳俯冲带地形[29]与空间重力异常[17]

    Figure 2. 

    图 3  基于卫星重力与地震约束的岛弧莫霍面反演流程图

    Figure 3. 

    图 4  伊豆−博宁−马里亚纳俯冲带地壳厚度与莫霍面埋深分布图

    Figure 4. 

    图 5  重力反演莫霍面与地震解释莫霍面沿剖面对比图

    Figure 5. 

    图 6  沿走向的伊豆−博宁−马里亚纳岛弧地壳体积分布

    Figure 6. 

  • [1]

    Albarède F. The growth of continental crust [J]. Tectonophysics, 1998, 296(1-2): 1-14. doi: 10.1016/S0040-1951(98)00133-4

    [2]

    Reymer A, Schubert G. Phanerozoic addition rates to the continental crust and crustal growth [J]. Tectonics, 1984, 3(1): 63-77. doi: 10.1029/TC003i001p00063

    [3]

    Taylor S R. The origin and growth of continents [J]. Tectonophysics, 1967, 4(1): 17-34. doi: 10.1016/0040-1951(67)90056-X

    [4]

    Suyehiro K, Takahashi N, Ariie Y, et al. Continental crust, crustal underplating, and low-Q upper mantle beneath an oceanic island arc [J]. Science, 1996, 272(5260): 390-392. doi: 10.1126/science.272.5260.390

    [5]

    Tatsumi Y. Migration of fluid phases and genesis of basalt magmas in subduction zones [J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B4): 4697-4707.

    [6]

    Schmidt M W, Poli S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation [J]. Earth and Planetary Science Letters, 1998, 163(1-4): 361-379. doi: 10.1016/S0012-821X(98)00142-3

    [7]

    Van Keken P E, Hacker B R, Syracuse E M, et al. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide [J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B1): B01401.

    [8]

    Grove T L, Till C B, Lev E, et al. Kinematic variables and water transport control the formation and location of arc volcanoes [J]. Nature, 2009, 459(7247): 694-697. doi: 10.1038/nature08044

    [9]

    郑永飞, 陈仁旭, 徐峥, 等. 俯冲带中的水迁移[J]. 中国科学: 地球科学, 2016, 59(4):651-682 doi: 10.1007/s11430-015-5258-4

    ZHENG Yongfei, CHEN Renxu, XU Zheng, et al. The transport of water in subduction zones [J]. Science China Earth Sciences, 2016, 59(4): 651-682. doi: 10.1007/s11430-015-5258-4

    [10]

    Perrin A, Goes S, Prytulak J, et al. Mantle wedge temperatures and their potential relation to volcanic arc location [J]. Earth and Planetary Science Letters, 2018, 501: 67-77. doi: 10.1016/j.jpgl.2018.08.011

    [11]

    Turner S J, Langmuir C H, Katz R F, et al. Parental arc magma compositions dominantly controlled by mantle-wedge thermal structure [J]. Nature Geoscience, 2016, 9(10): 772-776. doi: 10.1038/ngeo2788

    [12]

    Peacock S M. Thermal and petrologic structure of subduction zones[M]//Bebout G E, Scholl D W, Kirby S H, et al. Subduction: Top to Bottom. Washington, D.C.: Geophysical Monograph Series, 1996.

    [13]

    Magni V. The effects of back-arc spreading on arc magmatism [J]. Earth and Planetary Science Letters, 2019, 519: 141-151. doi: 10.1016/j.jpgl.2019.05.009

    [14]

    Mason W G, Moresi L, Betts P G, et al. Three-dimensional numerical models of the influence of a buoyant oceanic plateau on subduction zones [J]. Tectonophysics, 2010, 483(1-2): 71-79. doi: 10.1016/j.tecto.2009.08.021

    [15]

    Wallace L M, McCaffrey R, Beavan J, et al. Rapid microplate rotations and backarc rifting at the transition between collision and subduction [J]. Geology, 2005, 33(11): 857-860. doi: 10.1130/G21834.1

    [16]

    Harmon N, Blackman D K. Effects of plate boundary geometry and kinematics on mantle melting beneath the back-arc spreading centers along the Lau Basin [J]. Earth and Planetary Science Letters, 2010, 298(3-4): 334-346. doi: 10.1016/j.jpgl.2010.08.004

    [17]

    Sandwell D T, Müller R D, Smith W H F, et al. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure [J]. Science, 2014, 346(6205): 65-67. doi: 10.1126/science.1258213

    [18]

    Bai Y L, Li M, Wu S G, et al. Upper mantle density modelling for large-scale Moho gravity inversion: case study on the Atlantic Ocean [J]. Geophysical Journal International, 2019, 216(3): 2134-2147. doi: 10.1093/gji/ggz003

    [19]

    Bai Y L, Gui Z, Li M, et al. Crustal thickness over the NW Pacific and its tectonic implications [J]. Journal of Asian Earth Sciences, 2019, 185: 104050. doi: 10.1016/j.jseaes.2019.104050

    [20]

    Wang T T, Lin J, Tucholke B, et al. Crustal thickness anomalies in the North Atlantic Ocean basin from gravity analysis [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(3): Q0AE02.

    [21]

    Stern R J, Bloomer S H. Subduction zone infancy: Examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs [J]. GSA Bulletin, 1992, 104(12): 1621-1636. doi: 10.1130/0016-7606(1992)104<1621:SZIEFT>2.3.CO;2

    [22]

    Sdrolias M, Roest W R, Müller R D. An expression of Philippine Sea plate rotation: the Parece Vela and Shikoku Basins [J]. Tectonophysics, 2004, 394(1-2): 69-86. doi: 10.1016/j.tecto.2004.07.061

    [23]

    Okino K, Ohara Y, Kasuga S, et al. The Philippine Sea: New survey results reveal the structure and the history of the marginal basins [J]. Geophysical Research Letters, 1999, 26(15): 2287-2290. doi: 10.1029/1999GL900537

    [24]

    Ishizuka O, Hickey-Vargas R, Arculus R J, et al. Age of Izu–Bonin–Mariana arc basement [J]. Earth and Planetary Science Letters, 2018, 481: 80-90. doi: 10.1016/j.jpgl.2017.10.023

    [25]

    Arculus R J, Ishizuka O, Bogus K A, et al. A record of spontaneous subduction initiation in the Izu-Bonin-Mariana arc [J]. Nature Geoscience, 2015, 8(9): 728-733. doi: 10.1038/ngeo2515

    [26]

    Reagan M K, Pearce J A, Petronotis K, et al. Subduction initiation and ophiolite crust: new insights from IODP drilling [J]. International Geology Review, 2017, 59(11): 1439-1450. doi: 10.1080/00206814.2016.1276482

    [27]

    吴时国, 范建柯, 董冬冬. 论菲律宾海板块大地构造分区[J]. 地质科学, 2013, 48(3):677-692 doi: 10.3969/j.issn.0563-5020.2013.03.008

    WU Shiguo, FAN Jianke, DONG Dongdong. Discussion on the tectonic division of the Philippine Sea Plate [J]. Chinese Journal of Geology, 2013, 48(3): 677-692. doi: 10.3969/j.issn.0563-5020.2013.03.008

    [28]

    Hickey-Vargas R. Basalt and tonalite from the Amami Plateau, northern West Philippine Basin: New Early Cretaceous ages and geochemical results, and their petrologic and tectonic implications [J]. Island Arc, 2005, 14(4): 653-665. doi: 10.1111/j.1440-1738.2005.00474.x

    [29]

    Amante C, Eakins B W. ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis[DB/OL]. National Geophysical Data Center, NOAA, 2009. http://apdrc.soest.hawaii.edu/datadoc/etopo1.php.

    [30]

    Müller R D, Sdrolias M, Gaina C, et al. Age, spreading rates, and spreading asymmetry of the world's ocean crust [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4): Q04006.

    [31]

    Clouard V, Bonneville A. Ages of seamounts, islands, and plateau on the pacific plate[M]//Foulger G R, Natland J H, Presnall D C, et al. Plates, Plumes and Paradigms. Washington, DC: Geological Society of America, 2005.

    [32]

    Miller M S, Kennett B L N, Toy V G. Spatial and temporal evolution of the subducting Pacific plate structure along the western Pacific margin [J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B2): B02401.

    [33]

    Straume E O, Gaina C, Medvedev S, et al. Globsed: updated total sediment thickness in the world's oceans [J]. Geochemistry, Geophysics, Geosystems, 2019, 20(4): 1756-1772. doi: 10.1029/2018GC008115

    [34]

    Tenzer R, Pavel N, Vladislav G. The bathymetric stripping corrections to gravity field quantities for a depth-dependent model of seawater density [J]. Marine Geodesy, 2012, 35(2): 198-220. doi: 10.1080/01490419.2012.670592

    [35]

    Sawyer D S. Total tectonic subsidence: A parameter for distinguishing crust type at the U.S. atlantic continental margin [J]. Journal of Geophysical Research: Solid Earth, 1985, 90(B9): 7751-7769. doi: 10.1029/JB090iB09p07751

    [36]

    Takahashi N, Kodaira S, Klemperer S L, et al. Crustal structure and evolution of the Mariana intra-oceanic island arc [J]. Geology, 2007, 35(3): 203-206. doi: 10.1130/G23212A.1

    [37]

    Chappell A R, Kusznir N J. Three-dimensional gravity inversion for Moho depth at rifted continental margins incorporating a lithosphere thermal gravity anomaly correction [J]. Geophysical Journal International, 2008, 174(1): 1-13. doi: 10.1111/j.1365-246X.2008.03803.x

    [38]

    Bai Y L, Williams S E, Müller R D, et al. Mapping crustal thickness using marine gravity data: Methods and uncertainties [J]. Geophysics, 2014, 79(2): G27-G36. doi: 10.1190/geo2013-0270.1

    [39]

    Bai Y L, Dong D D, Kirby J F, et al. The effect of dynamic topography and gravity on lithospheric effective elastic thickness estimation: a case study [J]. Geophysical Journal International, 2018, 214(1): 623-634. doi: 10.1093/gji/ggy162

    [40]

    Isaak D G, Anderson O L, Goto T, et al. Elasticity of single-crystal forsterite measured to 1700 K [J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B5): 5895-5906. doi: 10.1029/JB094iB05p05895

    [41]

    Forte A M, Woodward R L, Dziewonski A M. Joint inversions of seismic and geodynamic data for models of three—dimensional mantle heterogeneity [J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B11): 21857-21877. doi: 10.1029/94JB01467

    [42]

    Schaeffer A J, Lebedev S. Global shear speed structure of the upper mantle and transition zone [J]. Geophysical Journal International, 2013, 194(1): 417-449. doi: 10.1093/gji/ggt095

    [43]

    Parker R L. The rapid calculation of potential anomalies [J]. Geophysical Journal of the Royal Astronomical Society, 1973, 31(4): 447-455. doi: 10.1111/j.1365-246X.1973.tb06513.x

    [44]

    Takahashi N, Kodaira S, Tatsumi Y, et al. Structural variations of arc crusts and rifted margins in the southern Izu-Ogasawara arc-back arc system [J]. Geochemistry, Geophysics, Geosystems, 2009, 10(9): Q09X08.

    [45]

    Nishizawa A, Kaneda K, Oikawa M. Crust and uppermost mantle structure of the Kyushu-Palau Ridge, remnant arc on the Philippine Sea plate [J]. Earth, Planets and Space, 2016, 68: 30. doi: 10.1186/s40623-016-0407-3

  • 加载中

(6)

计量
  • 文章访问数:  2097
  • PDF下载数:  21
  • 施引文献:  0
出版历程
收稿日期:  2020-07-30
修回日期:  2020-09-13
刊出日期:  2021-02-28

目录